Documentation Verification Report

OrdConnected

📁 Source: Mathlib/Order/Interval/Set/OrdConnected.lean

Statistics

MetricCount
DefinitionsOrdConnected
1
TheoremsordConnected, image_Icc, image_Ico, image_Ioc, image_Ioo, Icc_subset, dual, inter, inter', out, preimage_anti, preimage_antitoneOn, preimage_mono, preimage_monotoneOn, uIcc_subset, uIoc_subset, dual_ordConnected, dual_ordConnected_iff, image_subtype_val_Icc, image_subtype_val_Ico, image_subtype_val_Ioc, image_subtype_val_Ioo, image_subtype_val_uIcc, image_subtype_val_uIoc, image_subtype_val_uIoo, instDenselyOrdered, not_ordConnected_inter_Icc_iff, ordConnected_Icc, ordConnected_Ici, ordConnected_Ico, ordConnected_Iic, ordConnected_Iio, ordConnected_Ioc, ordConnected_Ioi, ordConnected_Ioo, ordConnected_biInter, ordConnected_def, ordConnected_dual, ordConnected_empty, ordConnected_iInter, ordConnected_iInter', ordConnected_iff, ordConnected_iff_uIcc_subset, ordConnected_iff_uIcc_subset_left, ordConnected_iff_uIcc_subset_right, ordConnected_image, ordConnected_inter_Icc_iff, ordConnected_inter_Icc_of_subset, ordConnected_of_Ioo, ordConnected_of_uIcc_subset_left, ordConnected_pi, ordConnected_pi', ordConnected_preimage, ordConnected_range, ordConnected_sInter, ordConnected_singleton, ordConnected_uIcc, ordConnected_uIoc, ordConnected_univ
59
Total60

IsAntichain

Theorems

NameKindAssumesProvesValidatesDepends On
ordConnected 📖mathematicalIsAntichain
Preorder.toLE
PartialOrder.toPreorder
Set.OrdConnectedSet.mem_singleton_iff
Set.Icc_self
eq
LE.le.trans

OrderEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
image_Icc 📖mathematicalSet.image
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
Set.Icc
preimage_Icc
Set.image_preimage_eq_inter_range
Set.inter_eq_left
Set.OrdConnected.out
image_Ico 📖mathematicalSet.image
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
Set.Ico
preimage_Ico
Set.image_preimage_eq_inter_range
Set.inter_eq_left
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ico_subset_Icc_self
Set.OrdConnected.out
image_Ioc 📖mathematicalSet.image
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
Set.Ioc
preimage_Ioc
Set.image_preimage_eq_inter_range
Set.inter_eq_left
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ioc_subset_Icc_self
Set.OrdConnected.out
image_Ioo 📖mathematicalSet.image
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
Set.Ioo
preimage_Ioo
Set.image_preimage_eq_inter_range
Set.inter_eq_left
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ioo_subset_Icc_self
Set.OrdConnected.out

Set

Definitions

NameCategoryTheorems
OrdConnected 📖CompData
76 mathmath: convex_iff_ordConnected, OrdConnected.preimage_antitoneOn, ordConnected_preimage, isPreconnected_iff_ordConnected, Finset.ordConnected_range_coe, OrdConnected.IicExtend, ordConnected_range, ordConnected_Ioi, ordConnected_iff_uIcc_subset_left, OrdConnected.image_deriv, starConvex_iff_ordConnected, Finset.ordConnected_range_val, ordConnected_Iic, IsLowerSet.ordConnected, IsAntichain.ordConnected, ordConnected_Ici, ordConnected_def, OrdConnected.vadd, ordConnected_Ico, OrdConnected.smul, Nonempty.ordConnected_iff_of_bdd', OrdConnected.image_ennreal_ofReal, OrdConnected.preimage_anti, ordConnected_iff_disjoint_Ioo_empty, OrdConnected.image_derivWithin, ordConnected_Ioc, dual_ordConnected, EMetric.ordConnected_setOf_closedBall_subset, ordConnected_univ, IsPreconnected.ordConnected, ordConnected_image, Metric.ordConnected_setOf_closedEBall_subset, ordConnected_Icc, OrdConnected.interior, OrdConnected.image_coe_nnreal_real, OrdConnected.preimage_coe_nnreal_ennreal, Nonempty.ordConnected_iff_of_bdd, OrdConnected.IciExtend, OrdConnected.restrict, ordConnected_iff_upperClosure_inter_lowerClosure, not_ordConnected_inter_Icc_iff, ordConnected_of_uIcc_subset_left, OrdConnected.image_real_toNNReal, ordConnected_dual, strictConvex_iff_ordConnected, IsUpperSet.ordConnected, ordConnected_inter_Icc_of_subset, Metric.ordConnected_setOf_eball_subset, OrdConnected.preimage_ennreal_ofReal, ordConnected_singleton, OrdConnected.dual, OrdConnected.inter, ordConnected_iff_uIcc_subset_right, Convex.ordConnected, OrdConnected.preimage_real_toNNReal, OrdConnected.preimage_mono, OrdConnected.preimage_coe_nnreal_real, ordConnected_inter_Icc_iff, ArchimedeanClass.FiniteResidueField.ordConnected_preimage_mk, ordConnected_Ioo, EMetric.ordConnected_setOf_ball_subset, ordConnected_Iio, dual_ordConnected_iff, ordConnected_iff_uIcc_subset, ordConnected_iff, StarConvex.ordConnected, OrdConnected.image_hasDerivWithinAt, OrdConnected.inter', ordConnected_empty, OrdConnected.image_coe_nnreal_ennreal, ordConnected_of_Ioo, instOrdConnectedOrdConnectedComponent, StrictConvex.ordConnected, ordConnected_uIoc, OrdConnected.preimage_monotoneOn, ordConnected_uIcc

Theorems

NameKindAssumesProvesValidatesDepends On
Icc_subset 📖mathematicalSet
instMembership
instHasSubset
Icc
OrdConnected.out
dual_ordConnected 📖mathematicalOrdConnected
OrderDual
OrderDual.instPreorder
preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrdConnected.dual
dual_ordConnected_iff 📖mathematicalOrdConnected
OrderDual
OrderDual.instPreorder
preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
ordConnected_dual
image_subtype_val_Icc 📖mathematicalimage
Set
instMembership
Icc
Subtype.preorder
OrderEmbedding.image_Icc
Subtype.range_coe_subtype
image_subtype_val_Ico 📖mathematicalimage
Set
instMembership
Ico
Subtype.preorder
OrderEmbedding.image_Ico
Subtype.range_coe_subtype
image_subtype_val_Ioc 📖mathematicalimage
Set
instMembership
Ioc
Subtype.preorder
OrderEmbedding.image_Ioc
Subtype.range_coe_subtype
image_subtype_val_Ioo 📖mathematicalimage
Set
instMembership
Ioo
Subtype.preorder
OrderEmbedding.image_Ioo
Subtype.range_coe_subtype
image_subtype_val_uIcc 📖mathematicalimage
Set
instMembership
uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Subtype.instLinearOrder
image_subtype_val_Icc
Monotone.map_inf
Subtype.mono_coe
Monotone.map_sup
image_subtype_val_uIoc 📖mathematicalimage
Set
instMembership
uIoc
Subtype.instLinearOrder
image_subtype_val_Ioc
Monotone.map_inf
Subtype.mono_coe
Monotone.map_sup
image_subtype_val_uIoo 📖mathematicalimage
Set
instMembership
uIoo
Subtype.instLinearOrder
image_subtype_val_Ioo
Monotone.map_inf
Subtype.mono_coe
Monotone.map_sup
instDenselyOrdered 📖mathematicalDenselyOrdered
Elem
Preorder.toLT
Set
instMembership
exists_between
OrdConnected.out
Ioo_subset_Icc_self
not_ordConnected_inter_Icc_iff 📖mathematicalSet
instMembership
OrdConnected
PartialOrder.toPreorder
instInter
Icc
Ioo
ordConnected_inter_Icc_iff
ordConnected_Icc 📖mathematicalOrdConnected
Icc
OrdConnected.inter
ordConnected_Ici
ordConnected_Iic
ordConnected_Ici 📖mathematicalOrdConnected
Ici
le_trans
ordConnected_Ico 📖mathematicalOrdConnected
Ico
OrdConnected.inter
ordConnected_Ici
ordConnected_Iio
ordConnected_Iic 📖mathematicalOrdConnected
Iic
le_trans
ordConnected_Iio 📖mathematicalOrdConnected
Iio
lt_of_le_of_lt
ordConnected_Ioc 📖mathematicalOrdConnected
Ioc
OrdConnected.inter
ordConnected_Ioi
ordConnected_Iic
ordConnected_Ioi 📖mathematicalOrdConnected
Ioi
lt_of_lt_of_le
ordConnected_Ioo 📖mathematicalOrdConnected
Ioo
OrdConnected.inter
ordConnected_Ioi
ordConnected_Iio
ordConnected_biInter 📖mathematicalOrdConnectediInterordConnected_iInter
ordConnected_def 📖mathematicalOrdConnected
Set
instHasSubset
Icc
OrdConnected.out'
ordConnected_dual 📖mathematicalOrdConnected
OrderDual
OrderDual.instPreorder
preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrdConnected.dual
ordConnected_empty 📖mathematicalOrdConnected
Set
instEmptyCollection
ordConnected_iInter 📖mathematicalOrdConnectediInterordConnected_sInter
forall_mem_range
ordConnected_iInter' 📖mathematicalOrdConnectediInterordConnected_iInter
ordConnected_iff 📖mathematicalOrdConnected
Set
instHasSubset
Icc
ordConnected_def
le_trans
ordConnected_iff_uIcc_subset 📖mathematicalOrdConnected
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
instHasSubset
uIcc
OrdConnected.uIcc_subset
HasSubset.Subset.trans
instIsTransSubset
Icc_subset_uIcc
ordConnected_iff_uIcc_subset_left 📖mathematicalSet
instMembership
OrdConnected
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instHasSubset
uIcc
OrdConnected.uIcc_subset
ordConnected_of_uIcc_subset_left
ordConnected_iff_uIcc_subset_right 📖mathematicalSet
instMembership
OrdConnected
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instHasSubset
uIcc
ordConnected_iff_uIcc_subset_left
uIcc_comm
ordConnected_image 📖mathematicalOrdConnected
image
DFunLike.coe
EquivLike.toFunLike
OrderIso.image_eq_preimage_symm
ordConnected_preimage
RelIso.instRelHomClass
ordConnected_inter_Icc_iff 📖mathematicalSet
instMembership
OrdConnected
PartialOrder.toPreorder
instInter
Icc
instHasSubset
Ioo
HasSubset.Subset.trans
instIsTransSubset
Ioo_subset_Icc_self
LE.le.trans
OrdConnected.out
left_mem_Icc
right_mem_Icc
ordConnected_inter_Icc_of_subset
ordConnected_inter_Icc_of_subset 📖mathematicalSet
instHasSubset
Ioo
PartialOrder.toPreorder
OrdConnected
instInter
Icc
ordConnected_of_Ioo
HasSubset.Subset.trans
instIsTransSubset
Ioo_subset_Ioo
subset_inter
Ioo_subset_Icc_self
ordConnected_of_Ioo 📖mathematicalSet
instHasSubset
Ioo
PartialOrder.toPreorder
OrdConnectedordConnected_iff
eq_or_lt_of_le
Icc_self
Ioc_insert_left
Ioo_insert_right
insert_subset_iff
ordConnected_of_uIcc_subset_left 📖mathematicalSet
instHasSubset
uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
OrdConnected
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ordConnected_iff_uIcc_subset
uIcc_subset_uIcc_union_uIcc
uIcc_comm
union_subset
ordConnected_pi 📖mathematicalOrdConnectedPi.preorder
pi
OrdConnected.out
ordConnected_pi' 📖mathematicalOrdConnectedPi.preorder
pi
ordConnected_pi
ordConnected_preimage 📖mathematicalOrdConnected
preimage
DFunLike.coe
OrdConnected.out
OrderHomClass.mono
ordConnected_range 📖mathematicalOrdConnected
range
DFunLike.coe
EquivLike.toFunLike
ordConnected_image
OrderIso.instOrderIsoClass
ordConnected_univ
ordConnected_sInter 📖mathematicalOrdConnectedsInterOrdConnected.out
ordConnected_singleton 📖mathematicalOrdConnected
PartialOrder.toPreorder
Set
instSingletonSet
Icc_self
ordConnected_Icc
ordConnected_uIcc 📖mathematicalOrdConnected
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
uIcc
ordConnected_Icc
ordConnected_uIoc 📖mathematicalOrdConnected
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
uIoc
ordConnected_Ioc
ordConnected_univ 📖mathematicalOrdConnected
univ
subset_univ

Set.OrdConnected

Theorems

NameKindAssumesProvesValidatesDepends On
dual 📖mathematicalSet.OrdConnected
OrderDual
OrderDual.instPreorder
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
out
inter 📖mathematicalSet.OrdConnected
Set
Set.instInter
Set.subset_inter
out
inter' 📖mathematicalSet.OrdConnected
Set
Set.instInter
inter
out 📖mathematicalSet
Set.instMembership
Set.instHasSubset
Set.Icc
out'
preimage_anti 📖mathematicalAntitoneSet.OrdConnected
Set.preimage
out
preimage_antitoneOn 📖mathematicalAntitoneOnSet.OrdConnected
Set
Set.instInter
Set.preimage
preimage_monotoneOn
dual
AntitoneOn.dual_right
preimage_mono 📖mathematicalMonotoneSet.OrdConnected
Set.preimage
out
preimage_monotoneOn 📖mathematicalMonotoneOnSet.OrdConnected
Set
Set.instInter
Set.preimage
LE.le.trans
Set.Subset.antisymm
le_rfl
out
uIcc_subset 📖mathematicalSet
Set.instMembership
Set.instHasSubset
Set.uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
out
min_rec'
max_rec'
uIoc_subset 📖mathematicalSet
Set.instMembership
Set.instHasSubset
Set.uIoc
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ioc_subset_Icc_self
uIcc_subset

---

← Back to Index