Documentation Verification Report

OrdConnectedComponent

πŸ“ Source: Mathlib/Order/Interval/Set/OrdConnectedComponent.lean

Statistics

MetricCount
DefinitionsordConnectedComponent, ordConnectedProj, ordConnectedSection, ordSeparatingSet, ordT5Nhd
5
Theoremsdisjoint_left_ordSeparatingSet, disjoint_ordT5Nhd, disjoint_right_ordSeparatingSet, dual_ordConnectedComponent, dual_ordConnectedSection, dual_ordSeparatingSet, eq_of_mem_ordConnectedSection_of_uIcc_subset, instOrdConnectedOrdConnectedComponent, mem_ordConnectedComponent, mem_ordConnectedComponent_comm, mem_ordConnectedComponent_ordConnectedProj, mem_ordConnectedComponent_trans, nonempty_ordConnectedComponent, ordConnectedComponent_empty, ordConnectedComponent_eq, ordConnectedComponent_eq_empty, ordConnectedComponent_inter, ordConnectedComponent_ordConnectedProj, ordConnectedComponent_subset, ordConnectedComponent_univ, ordConnectedProj_eq, ordConnectedProj_mem_ordConnectedComponent, ordConnectedSection_subset, ordSeparatingSet_comm, self_mem_ordConnectedComponent, subset_ordConnectedComponent
26
Total31

Set

Definitions

NameCategoryTheorems
ordConnectedComponent πŸ“–CompOp
17 mathmath: self_mem_ordConnectedComponent, dual_ordConnectedComponent, mem_ordConnectedComponent_ordConnectedProj, subset_ordConnectedComponent, mem_ordConnectedComponent_comm, ordConnectedComponent_eq_empty, ordConnectedComponent_eq, ordConnectedComponent_empty, ordConnectedComponent_inter, ordConnectedComponent_subset, ordConnectedComponent_univ, ordConnectedComponent_ordConnectedProj, ordConnectedProj_mem_ordConnectedComponent, ordConnectedComponent_mem_nhds, instOrdConnectedOrdConnectedComponent, mem_ordConnectedComponent, nonempty_ordConnectedComponent
ordConnectedProj πŸ“–CompOp
4 mathmath: mem_ordConnectedComponent_ordConnectedProj, ordConnectedProj_eq, ordConnectedComponent_ordConnectedProj, ordConnectedProj_mem_ordConnectedComponent
ordConnectedSection πŸ“–CompOp
5 mathmath: compl_ordConnectedSection_ordSeparatingSet_mem_nhdsGE, dual_ordConnectedSection, compl_ordConnectedSection_ordSeparatingSet_mem_nhds, compl_ordConnectedSection_ordSeparatingSet_mem_nhdsLE, ordConnectedSection_subset
ordSeparatingSet πŸ“–CompOp
7 mathmath: compl_ordConnectedSection_ordSeparatingSet_mem_nhdsGE, disjoint_right_ordSeparatingSet, ordSeparatingSet_comm, compl_ordConnectedSection_ordSeparatingSet_mem_nhds, compl_ordConnectedSection_ordSeparatingSet_mem_nhdsLE, dual_ordSeparatingSet, disjoint_left_ordSeparatingSet
ordT5Nhd πŸ“–CompOp
2 mathmath: disjoint_ordT5Nhd, ordT5Nhd_mem_nhdsSet

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_left_ordSeparatingSet πŸ“–mathematicalβ€”Disjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ordSeparatingSet
β€”Disjoint.inter_right'
disjoint_iUnionβ‚‚_right
Disjoint.mono_right
ordConnectedComponent_subset
disjoint_compl_right
disjoint_ordT5Nhd πŸ“–mathematicalβ€”Disjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ordT5Nhd
β€”disjoint_iff_inf_le
mem_iUnionβ‚‚
uIcc_subset_uIcc_union_uIcc
union_subset
uIcc_comm
ordSeparatingSet_comm
le_total
Icc_subset_uIcc'
Icc_subset_uIcc
CanLift.prf
Subtype.canLift
uIcc_of_le
mem_Icc
not_lt
disjoint_left
disjoint_left_ordSeparatingSet
LT.lt.le
disjoint_right_ordSeparatingSet
ordConnectedProj_mem_ordConnectedComponent
mem_range_self
subset_inter_iff
mem_ordConnectedComponent
le_of_not_ge
disjoint_right_ordSeparatingSet πŸ“–mathematicalβ€”Disjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ordSeparatingSet
β€”disjoint_left_ordSeparatingSet
ordSeparatingSet_comm
dual_ordConnectedComponent πŸ“–mathematicalβ€”ordConnectedComponent
OrderDual
OrderDual.instLinearOrder
preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
β€”ext
Function.Surjective.forall
Equiv.surjective
uIcc_toDual
EquivLike.range_eq_univ
dual_ordConnectedSection πŸ“–mathematicalβ€”ordConnectedSection
OrderDual
OrderDual.instLinearOrder
preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”ext
dual_ordConnectedComponent
Nonempty.some.congr_simp
dual_ordSeparatingSet πŸ“–mathematicalβ€”ordSeparatingSet
OrderDual
OrderDual.instLinearOrder
preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”iUnion_congr_Prop
Function.Surjective.iUnion_comp
Equiv.surjective
dual_ordConnectedComponent
preimage_iUnion
eq_of_mem_ordConnectedSection_of_uIcc_subset πŸ“–β€”Set
instMembership
ordConnectedSection
instHasSubset
uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”ordConnectedProj_eq
mem_ordConnectedComponent_trans
ordConnectedProj_mem_ordConnectedComponent
mem_ordConnectedComponent_ordConnectedProj
instOrdConnectedOrdConnectedComponent πŸ“–mathematicalβ€”OrdConnected
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ordConnectedComponent
β€”ordConnected_of_uIcc_subset_left
HasSubset.Subset.trans
instIsTransSubset
uIcc_subset_uIcc_left
mem_ordConnectedComponent πŸ“–mathematicalβ€”Set
instMembership
ordConnectedComponent
instHasSubset
uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”
mem_ordConnectedComponent_comm πŸ“–mathematicalβ€”Set
instMembership
ordConnectedComponent
β€”mem_ordConnectedComponent
uIcc_comm
mem_ordConnectedComponent_ordConnectedProj πŸ“–mathematicalβ€”Set
instMembership
ordConnectedComponent
ordConnectedProj
β€”mem_ordConnectedComponent_comm
ordConnectedProj_mem_ordConnectedComponent
mem_ordConnectedComponent_trans πŸ“–β€”Set
instMembership
ordConnectedComponent
β€”β€”uIcc_subset_uIcc_union_uIcc
union_subset
nonempty_ordConnectedComponent πŸ“–mathematicalβ€”Nonempty
ordConnectedComponent
Set
instMembership
β€”left_mem_uIcc
self_mem_ordConnectedComponent
ordConnectedComponent_empty πŸ“–mathematicalβ€”ordConnectedComponent
Set
instEmptyCollection
β€”ordConnectedComponent_eq_empty
notMem_empty
ordConnectedComponent_eq πŸ“–mathematicalSet
instHasSubset
uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ordConnectedComponentβ€”ext
mem_ordConnectedComponent_trans
mem_ordConnectedComponent_comm
ordConnectedComponent_eq_empty πŸ“–mathematicalβ€”ordConnectedComponent
Set
instEmptyCollection
instMembership
β€”not_nonempty_iff_eq_empty
nonempty_ordConnectedComponent
ordConnectedComponent_inter πŸ“–mathematicalβ€”ordConnectedComponent
Set
instInter
β€”β€”
ordConnectedComponent_ordConnectedProj πŸ“–mathematicalβ€”ordConnectedComponent
ordConnectedProj
Set
instMembership
β€”ordConnectedComponent_eq
mem_ordConnectedComponent_ordConnectedProj
ordConnectedComponent_subset πŸ“–mathematicalβ€”Set
instHasSubset
ordConnectedComponent
β€”right_mem_uIcc
ordConnectedComponent_univ πŸ“–mathematicalβ€”ordConnectedComponent
univ
β€”β€”
ordConnectedProj_eq πŸ“–mathematicalβ€”ordConnectedProj
Set
instHasSubset
uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instMembership
β€”mem_ordConnectedComponent
ordConnectedComponent_ordConnectedProj
self_mem_ordConnectedComponent
ordConnectedComponent_eq
Nonempty.some.congr_simp
ordConnectedProj_mem_ordConnectedComponent πŸ“–mathematicalβ€”Set
instMembership
ordConnectedComponent
ordConnectedProj
β€”Nonempty.some_mem
ordConnectedSection_subset πŸ“–mathematicalβ€”Set
instHasSubset
ordConnectedSection
β€”range_subset_iff
ordConnectedComponent_subset
Nonempty.some_mem
ordSeparatingSet_comm πŸ“–mathematicalβ€”ordSeparatingSetβ€”inter_comm
self_mem_ordConnectedComponent πŸ“–mathematicalβ€”Set
instMembership
ordConnectedComponent
β€”mem_ordConnectedComponent
uIcc_self
singleton_subset_iff
subset_ordConnectedComponent πŸ“–mathematicalSet
instMembership
instHasSubset
ordConnectedComponentβ€”HasSubset.Subset.trans
instIsTransSubset
OrdConnected.uIcc_subset

---

← Back to Index