Documentation Verification Report

OrdConnectedLinear

📁 Source: Mathlib/Order/Interval/Set/OrdConnectedLinear.lean

Statistics

MetricCount
Definitions0
Theoremseq_Icc_iff_int, eq_Icc_iff_nat, ordConnected_iff_of_bdd, ordConnected_iff_of_bdd', ordConnected_iff_disjoint_Ioo_empty
5
Total5

Set

Theorems

NameKindAssumesProvesValidatesDepends On
ordConnected_iff_disjoint_Ioo_empty 📖mathematicalOrdConnected
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Ioo
Set
instEmptyCollection
OrdConnected.out
mem_Icc_of_Ioo
ext
ordConnected_of_Ioo
Finite.exists_le_maximal
Finite.inter_of_right
finite_Icc
le_refl
LT.lt.le
lt_of_le_of_ne
Finite.exists_le_minimal
lt_of_le_of_ne'
Maximal.not_gt
le_trans
Minimal.not_lt
Ioc_union_Ico_eq_Ioo
eq_empty_iff_forall_notMem
Maximal.prop
Minimal.prop

Set.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
eq_Icc_iff_int 📖mathematicalSet.Nonempty
BddBelow
BddAbove
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ordConnected_iff_of_bdd
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Int.instNontrivial
eq_Icc_iff_nat 📖mathematicalSet.Nonempty
BddAbove
Set.Icc
Nat.instPreorder
InfSet.sInf
Nat.instInfSet
SupSet.sSup
Nat.instSupSet
ordConnected_iff_of_bdd
OrderBot.bddBelow
Nat.instNoMaxOrder
ordConnected_iff_of_bdd 📖mathematicalSet.Nonempty
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
BddAbove
Set.OrdConnected
Set.Icc
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
BddBelow.finite_of_bddAbove
le_antisymm
subset_Icc_csInf_csSup
Set.Icc_subset
csInf_mem
csSup_mem
Set.ordConnected_Icc
ordConnected_iff_of_bdd' 📖mathematicalSet.NonemptySet.OrdConnected
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.Icc
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ordConnected_iff_of_bdd
OrderBot.bddBelow
OrderTop.bddAbove

---

← Back to Index