Documentation Verification Report

SuccOrder

📁 Source: Mathlib/Order/Interval/Set/SuccOrder.lean

Statistics

MetricCount
DefinitionsSuccOrder
1
Theoremscoe_pred_of_not_isMin, pred_eq_of_not_isMin, coe_succ_of_not_isMax, succ_eq_of_not_isMax
4
Total5

Set.Ici

Theorems

NameKindAssumesProvesValidatesDepends On
coe_pred_of_not_isMin 📖mathematicalIsMin
Set.Elem
Set.Ici
PartialOrder.toPreorder
Preorder.toLE
Set
Set.instMembership
Order.pred
Subtype.preorder
Set.OrdConnected.predOrder
Set.ordConnected_Ici
Set.ordConnected_Ici
coe_pred_of_mem
Order.le_pred_of_lt
lt_of_le_of_ne
bot_le
pred_eq_of_not_isMin 📖mathematicalIsMin
Set.Elem
Set.Ici
PartialOrder.toPreorder
Preorder.toLE
Set
Set.instMembership
Order.pred
Subtype.preorder
Set.OrdConnected.predOrder
Set.ordConnected_Ici
Set.ordConnected_Ici
coe_pred_of_not_isMin

Set.Iic

Theorems

NameKindAssumesProvesValidatesDepends On
coe_succ_of_not_isMax 📖mathematicalIsMax
Set.Elem
Set.Iic
PartialOrder.toPreorder
Preorder.toLE
Set
Set.instMembership
Order.succ
Subtype.preorder
Set.OrdConnected.succOrder
Set.ordConnected_Iic
Set.ordConnected_Iic
coe_succ_of_mem
Order.succ_le_of_lt
lt_of_le_of_ne
le_top
succ_eq_of_not_isMax 📖mathematicalIsMax
Set.Elem
Set.Iic
PartialOrder.toPreorder
Preorder.toLE
Set
Set.instMembership
Order.succ
Subtype.preorder
Set.OrdConnected.succOrder
Set.ordConnected_Iic
Set.ordConnected_Iic
coe_succ_of_not_isMax

(root)

Definitions

NameCategoryTheorems
SuccOrder 📖CompData
2 mathmath: Order.instSubsingletonSuccOrder, WithBot.instIsEmptySuccOrderOfNonempty

---

← Back to Index