Documentation Verification Report

SurjOn

πŸ“ Source: Mathlib/Order/Interval/Set/SurjOn.lean

Statistics

MetricCount
DefinitionsSurjOn
1
TheoremssurjOn_Icc_of_monotone_surjective, surjOn_Ici_of_monotone_surjective, surjOn_Ico_of_monotone_surjective, surjOn_Iic_of_monotone_surjective, surjOn_Iio_of_monotone_surjective, surjOn_Ioc_of_monotone_surjective, surjOn_Ioi_of_monotone_surjective, surjOn_Ioo_of_monotone_surjective
8
Total9

Set

Definitions

NameCategoryTheorems
SurjOn πŸ“–MathDef
84 mathmath: LinearMap.injOn_iff_surjOn, surjOn_image, SimpleGraph.TripartiteFromTriangles.toTriangle_surjOn, ApproximatesLinearOn.surjOn_closedBall_of_nonlinearRightInverse, surjOn_iff_surjective, surjOn_univ_of_subsingleton_nonempty, ModularGroup.bottom_row_surj, ax_grothendieck_of_definable, Real.surjOn_log', surjOn_empty, Real.cosh_surjOn, Finset.image_surjOn_powerset, Pretrivialization.proj_surjOn_baseSet, projIic_surjOn, Subgroup.leftCoset_cover_const_iff_surjOn, surjOn_Ioo_of_monotone_surjective, Real.surjOn_logb', Real.artanh_surjOn, surjOn_univ, Real.ofDigits_SurjOn, ContinuousOn.surjOn_uIcc, Finset.intervalGapsWithin_surjOn, surjOn_of_subsingleton', Trivialization.proj_surjOn_baseSet, surjOn_of_subsingleton, EqOn.surjOn_iff, ContinuousOn.surjOn_of_tendsto', surjOn_comp_iff, surjOn_empty_iff, ContinuousOn.surjOn_of_tendsto, Function.Surjective.surjOn, Filter.map_surjOn_Iic_iff_surjOn, surjOn_iff_exists_bijOn_subset, OpenPartialHomeomorph.surjOn, AddSubgroup.leftCoset_cover_const_iff_surjOn, BijOn.surjOn, NormedAddGroupHom.SurjectiveOnWith.surjOn, Ordinal.typein_surjOn, Real.surjOn_log, RightInvOn.surjOn, AddSubmonoid.surjOn_iff_le_map, Real.surjOn_sin, surjOn_id, List.toFinset_surj_on, surjOn_Ioc_of_monotone_surjective, ContinuousOn.surjOn_Icc, Filter.map_surjOn_Iic_iff_le_map, Real.surjOn_cos, Finset.surjOn_of_injOn_of_card_le, surjOn_Iio_of_monotone_surjective, Real.surjOn_logb, Circle.surjOn_exp_neg_pi_pi, PrincipalSeg.surjOn, FirstOrder.realize_genericPolyMapSurjOnOfInjOn, surjective_iff_surjOn_univ, surjOn_Ioi_of_monotone_surjective, Finite.surjOn_iff_bijOn_of_mapsTo, surjOn_extremePoints_image, SimpleGraph.Copy.toSubgraph_surjOn, projIci_surjOn, SimpleGraph.Coloring.surjOn_of_card_le_isClique, surjOn_Icc_of_monotone_surjective, AddSubgroup.surjOn_iff_le_map, surjOn_iff_exists_map_subtype, projIcc_surjOn, ax_grothendieck_of_locally_finite, MapsTo.surjOn_compl, Function.Semiconj.surjOn_range, LeftInvOn.surjOn, surjOn_Ico_of_monotone_surjective, surjOn_singleton, Real.arcosh_surjOn, Submonoid.surjOn_iff_le_map, Real.surjOn_tan, surjOn_Ici_of_monotone_surjective, PartialEquiv.surjOn, Subgroup.surjOn_iff_le_map, surjOn_Iic_of_monotone_surjective, Real.tanh_surjOn, ax_grothendieck_zeroLocus, MapsTo.restrict_surjective_iff, Finpartition.part_surjOn, Submodule.surjOn_iff_le_map, image_eq_iff_surjOn_mapsTo

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
surjOn_Icc_of_monotone_surjective πŸ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
Set.SurjOn
Set.Icc
β€”Set.eq_endpoints_or_mem_Ioo_of_mem_Icc
Set.left_mem_Icc
Set.right_mem_Icc
Set.image_mono
Set.Ioo_subset_Icc_self
surjOn_Ioo_of_monotone_surjective
surjOn_Ici_of_monotone_surjective πŸ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.SurjOn
Set.Ici
β€”Set.Ioi_union_left
Set.SurjOn.union_union
surjOn_Ioi_of_monotone_surjective
Set.surjOn_image
Set.image_singleton
surjOn_Ico_of_monotone_surjective πŸ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.SurjOn
Set.Ico
β€”lt_or_ge
Set.eq_left_or_mem_Ioo_of_mem_Ico
Set.mem_image_of_mem
Set.left_mem_Ico
Set.image_mono
Set.Ioo_subset_Ico_self
surjOn_Ioo_of_monotone_surjective
Set.Ico_eq_empty
LE.le.not_gt
Set.surjOn_empty
surjOn_Iic_of_monotone_surjective πŸ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.SurjOn
Set.Iic
β€”surjOn_Ici_of_monotone_surjective
Monotone.dual
surjOn_Iio_of_monotone_surjective πŸ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.SurjOn
Set.Iio
β€”surjOn_Ioi_of_monotone_surjective
Monotone.dual
surjOn_Ioc_of_monotone_surjective πŸ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.SurjOn
Set.Ioc
β€”Set.Ico_toDual
surjOn_Ico_of_monotone_surjective
Monotone.dual
surjOn_Ioi_of_monotone_surjective πŸ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.SurjOn
Set.Ioi
β€”Set.compl_Iic
compl_compl
Set.MapsTo.surjOn_compl
LE.le.not_gt
surjOn_Ioo_of_monotone_surjective πŸ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.SurjOn
Set.Ioo
β€”Set.mem_Ioo
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
LT.lt.not_ge
Monotone.reflect_lt

---

← Back to Index