Documentation Verification Report

Irreducible

📁 Source: Mathlib/Order/Irreducible.lean

Statistics

MetricCount
DefinitionsInfIrred, InfPrime, SupIrred, SupPrime
4
Theoremsdual, finset_inf_eq, infPrime, ne_top, ofDual, dual, finset_inf_le, infIrred, inf_le, ne_top, ofDual, not_infIrred, not_infPrime, not_supIrred, not_supPrime, dual, finset_sup_eq, ne_bot, not_isMin, ofDual, supPrime, dual, le_finset_sup, le_sup, ne_bot, not_isMin, ofDual, supIrred, exists_infIrred_decomposition, exists_supIrred_decomposition, infIrred_iff_not_isMax, infIrred_ofDual, infIrred_toDual, infPrime_iff_infIrred, infPrime_iff_not_isMax, infPrime_ofDual, infPrime_toDual, not_infIrred, not_infIrred_top, not_infPrime, not_infPrime_top, not_supIrred, not_supIrred_bot, not_supPrime, not_supPrime_bot, supIrred_iff_not_isMin, supIrred_ofDual, supIrred_toDual, supPrime_iff_not_isMin, supPrime_iff_supIrred, supPrime_ofDual, supPrime_toDual
52
Total56

InfIrred

Theorems

NameKindAssumesProvesValidatesDepends On
dual 📖mathematicalInfIrredSupIrred
OrderDual
OrderDual.instSemilatticeSup
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
supIrred_toDual
finset_inf_eq 📖mathematicalInfIrred
Finset.inf
Finset
Finset.instMembership
SupIrred.finset_sup_eq
infPrime 📖mathematicalInfIrred
Lattice.toSemilatticeInf
DistribLattice.toLattice
InfPrimeinfPrime_iff_infIrred
ne_top 📖InfIrrednot_infIrred_top
ofDual 📖mathematicalInfIrred
OrderDual
OrderDual.instSemilatticeInf
SupIrred
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
supIrred_ofDual

InfPrime

Theorems

NameKindAssumesProvesValidatesDepends On
dual 📖mathematicalInfPrimeSupPrime
OrderDual
OrderDual.instSemilatticeSup
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
supPrime_toDual
finset_inf_le 📖mathematicalInfPrimePreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Finset.inf
Finset
Finset.instMembership
SupPrime.le_finset_sup
infIrred 📖mathematicalInfPrimeInfIrredEq.le
inf_le 📖mathematicalInfPrimePreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMin
inf_le_of_left_le
inf_le_of_right_le
ne_top 📖InfPrimenot_infPrime_top
ofDual 📖mathematicalInfPrime
OrderDual
OrderDual.instSemilatticeInf
SupPrime
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
supPrime_ofDual

IsMax

Theorems

NameKindAssumesProvesValidatesDepends On
not_infIrred 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
InfIrred
not_infPrime 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
InfPrime

IsMin

Theorems

NameKindAssumesProvesValidatesDepends On
not_supIrred 📖mathematicalIsMin
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SupIrred
not_supPrime 📖mathematicalIsMin
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SupPrime

SupIrred

Theorems

NameKindAssumesProvesValidatesDepends On
dual 📖mathematicalSupIrredInfIrred
OrderDual
OrderDual.instSemilatticeInf
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
infIrred_toDual
finset_sup_eq 📖mathematicalSupIrred
Finset.sup
Finset
Finset.instMembership
Finset.induction
Finset.sup_empty
ne_bot
Finset.sup_insert
ne_bot 📖SupIrrednot_supIrred_bot
not_isMin 📖mathematicalSupIrredIsMin
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
ofDual 📖mathematicalSupIrred
OrderDual
OrderDual.instSemilatticeSup
InfIrred
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
infIrred_ofDual
supPrime 📖mathematicalSupIrred
Lattice.toSemilatticeSup
DistribLattice.toLattice
SupPrimesupPrime_iff_supIrred

SupPrime

Theorems

NameKindAssumesProvesValidatesDepends On
dual 📖mathematicalSupPrimeInfPrime
OrderDual
OrderDual.instSemilatticeInf
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
infPrime_toDual
le_finset_sup 📖mathematicalSupPrimePreorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Finset.sup
Finset
Finset.instMembership
Finset.induction
Finset.sup_empty
ne_bot
Finset.sup_insert
le_sup
le_sup 📖mathematicalSupPrimePreorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMax
le_sup_of_le_left
le_sup_of_le_right
ne_bot 📖SupPrimenot_supPrime_bot
not_isMin 📖mathematicalSupPrimeIsMin
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
ofDual 📖mathematicalSupPrime
OrderDual
OrderDual.instSemilatticeSup
InfPrime
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
infPrime_ofDual
supIrred 📖mathematicalSupPrimeSupIrredEq.ge

(root)

Definitions

NameCategoryTheorems
InfIrred 📖MathDef
19 mathmath: InfPrime.infIrred, OrderEmbedding.infIrredUpperSet_surjective, SupIrred.ofDual, supIrred_ofDual, IsMax.not_infIrred, OrderIso.infIrredUpperSet_symm_apply, not_infIrred, OrderEmbedding.infIrredUpperSet_apply, supIrred_toDual, UpperSet.infIrred_Ici, infIrred_iff_not_isMax, OrderIso.infIrredUpperSet_apply, exists_infIrred_decomposition, infIrred_toDual, infIrred_ofDual, UpperSet.infIrred_iff_of_finite, SupIrred.dual, infPrime_iff_infIrred, not_infIrred_top
InfPrime 📖MathDef
12 mathmath: infPrime_iff_not_isMax, supPrime_toDual, infPrime_ofDual, not_infPrime_top, not_infPrime, SupPrime.dual, infPrime_toDual, InfIrred.infPrime, supPrime_ofDual, IsMax.not_infPrime, infPrime_iff_infIrred, SupPrime.ofDual
SupIrred 📖MathDef
26 mathmath: OrderEmbedding.supIrredLowerSet_apply, OrderEmbedding.birkhoffFinset_inf, supIrred_ofDual, OrderEmbedding.coe_birkhoffFinset, OrderIso.supIrredLowerSet_symm_apply, exists_supIrred_decomposition, OrderEmbedding.birkhoffSet_inf, LowerSet.supIrred_iff_of_finite, supIrred_toDual, not_supIrred_bot, supIrred_iff_not_isMin, OrderIso.supIrredLowerSet_apply, InfIrred.dual, OrderEmbedding.supIrredLowerSet_surjective, SupPrime.supIrred, OrderEmbedding.birkhoffSet_sup, supPrime_iff_supIrred, infIrred_toDual, IsMin.not_supIrred, infIrred_ofDual, not_supIrred, LatticeHom.birkhoffFinset_injective, OrderEmbedding.birkhoffSet_apply, LowerSet.supIrred_Iic, OrderEmbedding.birkhoffFinset_sup, InfIrred.ofDual
SupPrime 📖MathDef
12 mathmath: not_supPrime, SupIrred.supPrime, supPrime_toDual, infPrime_ofDual, InfPrime.dual, supPrime_iff_not_isMin, InfPrime.ofDual, infPrime_toDual, supPrime_iff_supIrred, IsMin.not_supPrime, supPrime_ofDual, not_supPrime_bot

Theorems

NameKindAssumesProvesValidatesDepends On
exists_infIrred_decomposition 📖mathematicalFinset.inf
InfIrred
exists_supIrred_decomposition
instWellFoundedLTOrderDualOfWellFoundedGT
exists_supIrred_decomposition 📖mathematicalFinset.sup
SupIrred
WellFoundedLT.induction
Finset.sup_singleton
not_supIrred
Finset.sup_empty
IsMin.eq_bot
instIsEmptyFalse
Finset.sup_union
Finset.forall_mem_union
infIrred_iff_not_isMax 📖mathematicalInfIrred
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
infIrred_ofDual 📖mathematicalInfIrred
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
SupIrred
OrderDual.instSemilatticeSup
infIrred_toDual 📖mathematicalInfIrred
OrderDual
OrderDual.instSemilatticeInf
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
SupIrred
infPrime_iff_infIrred 📖mathematicalInfPrime
Lattice.toSemilatticeInf
DistribLattice.toLattice
InfIrred
InfPrime.infIrred
sup_inf_left
infPrime_iff_not_isMax 📖mathematicalInfPrime
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
infPrime_ofDual 📖mathematicalInfPrime
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
SupPrime
OrderDual.instSemilatticeSup
infPrime_toDual 📖mathematicalInfPrime
OrderDual
OrderDual.instSemilatticeInf
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
SupPrime
not_infIrred 📖mathematicalInfIrred
IsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMin
Preorder.toLT
not_supIrred
not_infIrred_top 📖mathematicalInfIrred
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
IsMax.not_infIrred
isMax_top
not_infPrime 📖mathematicalInfPrime
IsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMin
not_supPrime
not_infPrime_top 📖mathematicalInfPrime
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
IsMax.not_infPrime
isMax_top
not_supIrred 📖mathematicalSupIrred
IsMin
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMax
Preorder.toLT
SupIrred.eq_1
not_and_or
Mathlib.Tactic.Push.not_forall_eq
not_supIrred_bot 📖mathematicalSupIrred
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
IsMin.not_supIrred
isMin_bot
not_supPrime 📖mathematicalSupPrime
IsMin
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMax
SupPrime.eq_1
not_and_or
Mathlib.Tactic.Push.not_forall_eq
not_supPrime_bot 📖mathematicalSupPrime
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
IsMin.not_supPrime
isMin_bot
supIrred_iff_not_isMin 📖mathematicalSupIrred
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsMin
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
supIrred_ofDual 📖mathematicalSupIrred
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
InfIrred
OrderDual.instSemilatticeInf
supIrred_toDual 📖mathematicalSupIrred
OrderDual
OrderDual.instSemilatticeSup
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
InfIrred
supPrime_iff_not_isMin 📖mathematicalSupPrime
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsMin
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
supPrime_iff_supIrred 📖mathematicalSupPrime
Lattice.toSemilatticeSup
DistribLattice.toLattice
SupIrred
SupPrime.supIrred
inf_sup_left
supPrime_ofDual 📖mathematicalSupPrime
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
InfPrime
OrderDual.instSemilatticeInf
supPrime_toDual 📖mathematicalSupPrime
OrderDual
OrderDual.instSemilatticeSup
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
InfPrime

---

← Back to Index