Documentation Verification Report

IsNormal

📁 Source: Mathlib/Order/IsNormal.lean

Statistics

MetricCount
Definitions0
TheoremsisNormal, apply_of_isSuccLimit, comp, ext, id, isLUB_image_Iio_of_isSuccLimit, le_iff_forall_le, lt_iff_exists_lt, map_iSup, map_isLUB, map_isSuccLimit, map_sSup, mem_lowerBounds_upperBounds_of_isSuccLimit, monotone, of_succ_lt, preimage_Iic, strictMono, isNormal_iff, isNormal_iff', isNormal, isNormal
21
Total21

InitialSeg

Theorems

NameKindAssumesProvesValidatesDepends On
isNormal 📖mathematicalOrder.IsNormal
DFunLike.coe
InitialSeg
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instFunLike
strictMono
image_Iio
Order.IsSuccLimit.isLUB_Iio
map_isSuccLimit

Order

Theorems

NameKindAssumesProvesValidatesDepends On
isNormal_iff 📖mathematicalIsNormal
StrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
isNormal_iff' 📖mathematicalIsNormal
StrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
lowerBounds
Preorder.toLE
upperBounds
Set.image
Set.Iio

Order.IsNormal

Theorems

NameKindAssumesProvesValidatesDepends On
apply_of_isSuccLimit 📖mathematicalOrder.IsNormal
ConditionallyCompleteLinearOrder.toLinearOrder
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Order.IsSuccLimit
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
iSup
Set.Elem
Set.Iio
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
Order.IsSuccLimit.iSup_Iio
map_iSup
Order.IsSuccLimit.bot_lt
LT.lt.le
comp 📖Order.IsNormalStrictMono.comp
strictMono
le_iff_forall_le
map_isSuccLimit
lt_iff_exists_lt
LE.le.trans
LT.lt.le
Set.image_congr
ext 📖mathematicalOrder.IsNormalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.succ
IsMin.eq_bot
IsLUB.unique
isLUB_image_Iio_of_isSuccLimit
Set.ext
id 📖mathematicalOrder.IsNormalOrderIso.isNormal
isLUB_image_Iio_of_isSuccLimit 📖mathematicalOrder.IsNormal
Order.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsLUB
Preorder.toLE
Set.image
Set.Iio
LT.lt.le
strictMono
mem_lowerBounds_upperBounds_of_isSuccLimit
le_iff_forall_le 📖mathematicalOrder.IsNormal
Order.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLEisLUB_le_iff
isLUB_image_Iio_of_isSuccLimit
lt_iff_exists_lt 📖mathematicalOrder.IsNormal
Order.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLTlt_isLUB_iff
isLUB_image_Iio_of_isSuccLimit
map_iSup 📖mathematicalOrder.IsNormal
ConditionallyCompleteLinearOrder.toLinearOrder
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.ext
map_sSup
Set.range_nonempty
map_isLUB 📖mathematicalOrder.IsNormal
IsLUB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Set.imageStrictMono.le_iff_le
strictMono
IsLUB.isSuccLimit_of_notMem
le_iff_forall_le
IsLUB.exists_between
LE.le.trans
LT.lt.le
map_isSuccLimit 📖Order.IsNormal
Order.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
not_isMin_iff
Order.IsSuccLimit.not_isMin
strictMono
lt_iff_exists_lt
CovBy.lt
CovBy.ge_of_gt
LT.lt.not_ge
StrictMono.le_iff_le
map_sSup 📖mathematicalOrder.IsNormal
ConditionallyCompleteLinearOrder.toLinearOrder
Set.Nonempty
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.image
IsLUB.csSup_eq
map_isLUB
isLUB_csSup
Set.Nonempty.image
mem_lowerBounds_upperBounds_of_isSuccLimit 📖mathematicalOrder.IsNormal
Order.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
lowerBounds
Preorder.toLE
upperBounds
Set.image
Set.Iio
monotone 📖mathematicalOrder.IsNormalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
StrictMono.monotone
strictMono
of_succ_lt 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.succ
IsLUB
Preorder.toLE
Set.image
Set.Iio
Order.IsNormalIsMin.not_lt
Order.lt_succ_iff_eq_or_lt_of_not_isMax
LT.lt.trans
Order.IsSuccLimit.succ_lt
LT.lt.trans_le
Order.lt_succ_of_not_isMax
LT.lt.not_isMax
Set.mem_image_of_mem
preimage_Iic 📖mathematicalOrder.IsNormal
ConditionallyCompleteLinearOrder.toLinearOrder
Set.Nonempty
Set.preimage
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
BddAbove
Preorder.toLE
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
le_antisymm
le_csSup
LE.le.lt_or_eq
lt_csSup_iff
LE.le.trans
LT.lt.le
strictMono
Set.mem_preimage
map_sSup
csSup_le_csSup
bddAbove_Iic
Set.image_preimage_subset
csSup_Iic
le_refl
strictMono 📖mathematicalOrder.IsNormalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder

OrderIso

Theorems

NameKindAssumesProvesValidatesDepends On
isNormal 📖mathematicalOrder.IsNormal
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instFunLikeOrderIso
InitialSeg.isNormal

PrincipalSeg

Theorems

NameKindAssumesProvesValidatesDepends On
isNormal 📖mathematicalOrder.IsNormal
DFunLike.coe
RelEmbedding
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
RelEmbedding.instFunLike
toRelEmbedding
InitialSeg.isNormal
mem_range_of_rel
instIsTransLt

---

← Back to Index