Documentation Verification Report

KrullDimension

πŸ“ Source: Mathlib/Order/KrullDimension.lean

Statistics

MetricCount
DefinitionsKrullDimLE, coheight, height, krullDim
4
Theoremsheight_last_longestOf, coheight_eq_zero, height_eq_zero, krullDim_le, mono, length_le_krullDim, bot_lt_krullDim, bot_lt_krullDim_iff, coe_lt_coheight_iff, coe_lt_height_iff, coheight_add_one_le, coheight_anti, coheight_bot_eq_krullDim, coheight_coe_enat, coheight_coe_withBot, coheight_coe_withTop, coheight_eq, coheight_eq_coe_add_one_iff, coheight_eq_coe_iff, coheight_eq_coe_iff_maximal_le_coheight, coheight_eq_iSup_gt_coheight, coheight_eq_iSup_head_eq, coheight_eq_index_of_length_eq_head_coheight, coheight_eq_krullDim_Ici, coheight_eq_top_iff, coheight_eq_zero, coheight_int, coheight_le, coheight_le_coe_iff, coheight_le_coheight_apply_of_strictMono, coheight_le_iff, coheight_le_iff', coheight_le_krullDim, coheight_le_of_krullDim_preimage_le, coheight_nat, coheight_ne_zero, coheight_ofDual, coheight_of_noMaxOrder, coheight_orderIso, coheight_pos, coheight_pos_of_lt_top, coheight_strictAnti, coheight_toDual, coheight_top, exists_series_of_coheight_eq_coe, exists_series_of_height_eq_coe, exists_series_of_le_coheight, exists_series_of_le_height, finiteDimensionalOrder_iff_krullDim_ne_bot_and_top, height_add_one_le, height_bot, height_coe_withBot, height_coe_withTop, height_enat, height_eq_coe_add_one_iff, height_eq_coe_iff, height_eq_coe_iff_minimal_le_height, height_eq_iSup_last_eq, height_eq_iSup_lt_height, height_eq_index_of_length_eq_height_last, height_eq_krullDim_Iic, height_eq_top_iff, height_eq_zero, height_int, height_le, height_le_coe_iff, height_le_height_apply_of_strictMono, height_le_iff, height_le_iff', height_le_krullDim, height_le_of_krullDim_preimage_le, height_mono, height_nat, height_ne_zero, height_ofDual, height_of_noMinOrder, height_orderIso, height_pos, height_pos_of_bot_lt, height_strictMono, height_toDual, height_top_eq_krullDim, index_le_height, instKrullDimLEOfNatNatOfSubsingleton, krullDimLE_iff, krullDim_WithTop, krullDim_enat, krullDim_eq_bot, krullDim_eq_bot_iff, krullDim_eq_iSup_coheight, krullDim_eq_iSup_coheight_of_nonempty, krullDim_eq_iSup_height, krullDim_eq_iSup_height_add_coheight_of_nonempty, krullDim_eq_iSup_height_of_nonempty, krullDim_eq_iSup_length, krullDim_eq_length_of_finiteDimensionalOrder, krullDim_eq_of_orderIso, krullDim_eq_one_iff_of_boundedOrder, krullDim_eq_top, krullDim_eq_top_iff, krullDim_eq_zero, krullDim_eq_zero_iff_of_orderBot, krullDim_eq_zero_iff_of_orderTop, krullDim_eq_zero_of_unique, krullDim_int, krullDim_le_of_krullDim_preimage_le, krullDim_le_of_krullDim_preimage_le', krullDim_le_of_strictComono_and_surj, krullDim_le_of_strictMono, krullDim_le_one_iff, krullDim_le_one_iff_forall_isMax, krullDim_le_one_iff_forall_isMin, krullDim_le_one_iff_of_boundedOrder, krullDim_lt_coe_iff, krullDim_nat, krullDim_ne_bot_iff, krullDim_ne_bot_of_finiteDimensionalOrder, krullDim_ne_top_of_finiteDimensionalOrder, krullDim_nonneg, krullDim_nonneg_iff, krullDim_nonpos_iff_forall_isMax, krullDim_nonpos_iff_forall_isMin, krullDim_nonpos_of_subsingleton, krullDim_of_isSimpleOrder, krullDim_of_noMaxOrder, krullDim_of_noMinOrder, krullDim_orderDual, krullDim_pos_iff, krullDim_pos_iff_of_orderBot, krullDim_pos_iff_of_orderTop, krullDim_withBot, le_krullDim_iff, length_le_coheight, length_le_coheight_head, length_le_height, length_le_height_last, one_le_krullDim_iff, one_lt_height_iff, rev_index_le_coheight
139
Total143

LTSeries

Theorems

NameKindAssumesProvesValidatesDepends On
height_last_longestOf πŸ“–mathematicalβ€”WithBot.some
ENat
Order.height
RelSeries.last
setOf
Preorder.toLT
longestOf
Order.krullDim
β€”le_antisymm
Order.height_le_krullDim
Order.krullDim_eq_length_of_finiteDimensionalOrder
Order.height.eq_1
le_iSup_iff
iSup_le_iff
le_rfl

Order

Definitions

NameCategoryTheorems
KrullDimLE πŸ“–CompData
3 mathmath: KrullDimLE.mono, instKrullDimLEOfNatNatOfSubsingleton, krullDimLE_iff
coheight πŸ“–CompOp
42 mathmath: coheight_add_one_le, height_ofDual, coheight_le, length_le_coheight, coheight_le_krullDim, coheight_eq_coe_add_one_iff, krullDim_eq_iSup_coheight_of_nonempty, coheight_pos_of_lt_top, coheight_eq_coe_iff_maximal_le_coheight, IsMax.coheight_eq_zero, coheight_eq_iSup_head_eq, coheight_int, coheight_coe_withTop, coheight_of_noMaxOrder, coheight_eq_krullDim_Ici, coheight_le_of_krullDim_preimage_le, krullDim_eq_iSup_coheight, coheight_eq_zero, coheight_top, coheight_eq_top_iff, coheight_le_coheight_apply_of_strictMono, coheight_le_iff', coheight_nat, coheight_le_coe_iff, Module.length_eq_coheight, coheight_coe_enat, krullDim_eq_iSup_height_add_coheight_of_nonempty, coheight_coe_withBot, coheight_eq_coe_iff, coheight_bot_eq_krullDim, Module.length_quotient, coheight_anti, coheight_pos, coheight_eq, rev_index_le_coheight, coheight_eq_iSup_gt_coheight, length_le_coheight_head, coheight_ofDual, coheight_orderIso, height_toDual, coheight_le_iff, coheight_toDual
height πŸ“–CompOp
46 mathmath: AlgebraicGeometry.Scheme.height_of_isClosed, height_ofDual, height_add_one_le, height_nat, height_pos, height_orderIso, Submodule.height_strictMono, height_le_krullDim, height_coe_withTop, height_pos_of_bot_lt, height_eq_zero, height_of_noMinOrder, Module.length_submodule, krullDim_eq_iSup_height_of_nonempty, height_eq_iSup_lt_height, height_eq_coe_add_one_iff, height_le_coe_iff, height_eq_coe_iff, height_eq_krullDim_Iic, length_le_height, height_le_height_apply_of_strictMono, height_le_of_krullDim_preimage_le, krullDim_eq_iSup_height, height_le, height_top_eq_krullDim, height_bot, krullDim_eq_iSup_height_add_coheight_of_nonempty, height_int, height_le_iff, Module.length_eq_height, IsMin.height_eq_zero, height_mono, height_le_iff', LTSeries.height_last_longestOf, index_le_height, height_coe_withBot, height_eq_iSup_last_eq, height_enat, length_le_height_last, Submodule.height_lt_top, height_eq_top_iff, coheight_ofDual, height_eq_coe_iff_minimal_le_height, height_toDual, one_lt_height_iff, coheight_toDual
krullDim πŸ“–CompOp
57 mathmath: LTSeries.length_le_krullDim, krullDim_le_of_strictComono_and_surj, krullDim_of_noMaxOrder, krullDim_lt_coe_iff, krullDim_nonneg_iff, krullDim_pos_iff, krullDim_le_one_iff, ringKrullDim_quotient, krullDim_eq_zero_of_unique, le_krullDim_iff, krullDim_eq_top, coheight_le_krullDim, krullDim_nonpos_iff_forall_isMax, krullDim_nonpos_iff_forall_isMin, krullDim_int, height_le_krullDim, Module.coe_length, bot_lt_krullDim, krullDim_eq_iSup_coheight_of_nonempty, krullDim_eq_iSup_length, krullDim_nonpos_of_subsingleton, krullDim_eq_of_orderIso, krullDim_WithTop, krullDim_eq_iSup_height_of_nonempty, coheight_eq_krullDim_Ici, krullDim_enat, height_eq_krullDim_Iic, krullDim_le_one_iff_of_boundedOrder, krullDim_eq_iSup_coheight, krullDim_eq_bot_iff, krullDim_eq_iSup_height, height_top_eq_krullDim, krullDim_eq_zero_iff_of_orderTop, one_le_krullDim_iff, krullDim_le_of_strictMono, krullDim_orderDual, krullDim_le_one_iff_forall_isMax, krullDim_withBot, krullDim_pos_iff_of_orderTop, krullDim_eq_zero, krullDim_eq_iSup_height_add_coheight_of_nonempty, krullDim_pos_iff_of_orderBot, krullDim_eq_bot, coheight_bot_eq_krullDim, krullDim_eq_length_of_finiteDimensionalOrder, KrullDimLE.krullDim_le, krullDim_eq_one_iff_of_boundedOrder, krullDim_nonneg, LTSeries.height_last_longestOf, krullDim_le_one_iff_forall_isMin, krullDim_of_noMinOrder, krullDim_of_isSimpleOrder, krullDim_eq_zero_iff_of_orderBot, bot_lt_krullDim_iff, krullDim_nat, krullDimLE_iff, krullDim_eq_top_iff

Theorems

NameKindAssumesProvesValidatesDepends On
bot_lt_krullDim πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLT
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Bot.bot
WithBot.bot
krullDim
β€”bot_lt_krullDim_iff
bot_lt_krullDim_iff πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLT
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Bot.bot
WithBot.bot
krullDim
β€”bot_lt_iff_ne_bot
krullDim_ne_bot_iff
coe_lt_coheight_iff πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
coheight
Top.top
instTopENat
ENat.instNatCastβ€”coe_lt_height_iff
coe_lt_height_iff πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
height
Top.top
instTopENat
ENat.instNatCastβ€”LT.lt.ne_top
exists_series_of_height_eq_coe
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
LTSeries.strictMono
height_eq_index_of_length_eq_height_last
height_strictMono
lt_of_le_of_lt
height_mono
LT.lt.le
coheight_add_one_le πŸ“–mathematicalPreorder.toLTENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
coheight
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”coheight_anti
le_of_lt
top_add
add_one_le_of_lt
coheight_strictAnti
coheight_anti πŸ“–mathematicalβ€”Antitone
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
coheight
β€”Monotone.dual_left
height_mono
coheight_bot_eq_krullDim πŸ“–mathematicalβ€”WithBot.some
ENat
coheight
Bot.bot
OrderBot.toBot
Preorder.toLE
krullDim
β€”krullDim_orderDual
height_top_eq_krullDim
coheight_coe_enat πŸ“–mathematicalβ€”coheight
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
Top.top
instTopENat
β€”coheight_coe_withTop
coheight_nat
top_add
coheight_coe_withBot πŸ“–mathematicalβ€”coheight
WithBot
WithBot.instPreorder
WithBot.some
β€”height_coe_withTop
coheight_coe_withTop πŸ“–mathematicalβ€”coheight
WithTop
WithTop.instPreorder
WithTop.some
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”height_coe_withBot
coheight_eq πŸ“–mathematicalβ€”coheight
iSup
ENat
LTSeries
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Preorder.toLE
RelSeries.head
setOf
Preorder.toLT
ENat.instNatCast
RelSeries.length
β€”Equiv.iSup_congr
RelSeries.reverse_reverse
iSup_congr_Prop
coheight_eq_coe_add_one_iff πŸ“–mathematicalβ€”coheight
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
ENat.instNatCast
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Top.top
instTopENat
Preorder.toLE
β€”height_eq_coe_add_one_iff
coheight_eq_coe_iff πŸ“–mathematicalβ€”coheight
ENat
ENat.instNatCast
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Top.top
instTopENat
instSubENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”height_eq_coe_iff
coheight_eq_coe_iff_maximal_le_coheight πŸ“–mathematicalβ€”coheight
ENat
ENat.instNatCast
Maximal
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”height_eq_coe_iff_minimal_le_height
coheight_eq_iSup_gt_coheight πŸ“–mathematicalβ€”coheight
iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Preorder.toLT
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”height_eq_iSup_lt_height
coheight_eq_iSup_head_eq πŸ“–mathematicalβ€”coheight
iSup
ENat
LTSeries
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
RelSeries.head
setOf
Preorder.toLT
ENat.instNatCast
RelSeries.length
β€”height_eq_iSup_last_eq
Equiv.iSup_congr
RelSeries.reverse_reverse
iSup_congr_Prop
RelSeries.head_reverse
coheight_eq_index_of_length_eq_head_coheight πŸ“–mathematicalENat
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
coheight
RelSeries.head
RelSeries.toFunβ€”height_eq_index_of_length_eq_height_last
RelSeries.last_reverse
coheight_eq_krullDim_Ici πŸ“–mathematicalβ€”WithBot.some
ENat
coheight
krullDim
Set.Elem
Set.Ici
Subtype.preorder
Set
Set.instMembership
β€”coheight.eq_1
krullDim_orderDual
krullDim_eq_of_orderIso
height_eq_krullDim_Iic
coheight_eq_top_iff πŸ“–mathematicalβ€”coheight
Top.top
ENat
instTopENat
RelSeries.head
setOf
Preorder.toLT
RelSeries.length
β€”RelSeries.last_reverse
RelSeries.head_reverse
height_eq_top_iff
coheight_eq_zero πŸ“–mathematicalβ€”coheight
ENat
instZeroENat
IsMax
Preorder.toLE
β€”height_eq_zero
coheight_int πŸ“–mathematicalβ€”coheight
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
Top.top
ENat
instTopENat
β€”coheight_of_noMaxOrder
LinearOrderedAddCommGroup.to_noMaxOrder
Int.instIsOrderedAddMonoid
Infinite.instNontrivial
Int.infinite
coheight_le πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
coheightβ€”coheight_le_iff'
coheight_le_coe_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
coheight
ENat.instNatCast
Preorder.toLT
β€”height_le_coe_iff
coheight_le_coheight_apply_of_strictMono πŸ“–mathematicalStrictMonoENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
coheight
β€”height_le_height_apply_of_strictMono
coheight_le_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
coheight
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
β€”coheight_eq
iSupβ‚‚_le_iff
coheight_le_iff' πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
coheight
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
β€”coheight_eq_iSup_head_eq
iSupβ‚‚_le_iff
coheight_le_krullDim πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
WithBot.some
coheight
krullDim
β€”krullDim_orderDual
height_le_krullDim
coheight_le_of_krullDim_preimage_le πŸ“–mathematicalWithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
Set.Elem
Set.preimage
DFunLike.coe
OrderHom
OrderHom.instFunLike
Set
Set.instSingletonSet
Subtype.preorder
Set.instMembership
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
coheight
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toMul
ENat.instNatCast
AddMonoidWithOne.toOne
β€”coheight.eq_1
height_le_of_krullDim_preimage_le
krullDim_orderDual
coheight_nat πŸ“–mathematicalβ€”coheight
Nat.instPreorder
Top.top
ENat
instTopENat
β€”coheight_of_noMaxOrder
Nat.instNoMaxOrder
coheight_ne_zero πŸ“–mathematicalβ€”IsMax
Preorder.toLE
β€”Iff.not
coheight_eq_zero
coheight_ofDual πŸ“–mathematicalβ€”coheight
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
height
OrderDual.instPreorder
β€”β€”
coheight_of_noMaxOrder πŸ“–mathematicalβ€”coheight
Top.top
ENat
instTopENat
β€”Nat.exists_strictMono
Set.nonempty_Ioi_subtype
Set.instNoMaxOrderElemIoi
coheight_eq_top_iff
Subtype.prop
coheight_orderIso πŸ“–mathematicalβ€”coheight
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
β€”height_orderIso
coheight_pos πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
coheight
IsMax
Preorder.toLE
β€”β€”
coheight_pos_of_lt_top πŸ“–mathematicalPreorder.toLT
Top.top
OrderTop.toTop
Preorder.toLE
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
coheight
β€”coheight_pos
coheight_strictAnti πŸ“–β€”Preorder.toLT
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
coheight
Top.top
instTopENat
β€”β€”height_strictMono
coheight_toDual πŸ“–mathematicalβ€”coheight
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
height
β€”β€”
coheight_top πŸ“–mathematicalβ€”coheight
Top.top
OrderTop.toTop
Preorder.toLE
ENat
instZeroENat
β€”β€”
exists_series_of_coheight_eq_coe πŸ“–mathematicalcoheight
ENat
ENat.instNatCast
RelSeries.head
setOf
Preorder.toLT
RelSeries.length
β€”exists_series_of_le_coheight
le_of_eq
exists_series_of_height_eq_coe πŸ“–mathematicalheight
ENat
ENat.instNatCast
RelSeries.last
setOf
Preorder.toLT
RelSeries.length
β€”exists_series_of_le_height
le_of_eq
exists_series_of_le_coheight πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
coheight
RelSeries.head
setOf
Preorder.toLT
RelSeries.length
β€”exists_series_of_le_height
RelSeries.head_reverse
exists_series_of_le_height πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
height
RelSeries.last
setOf
Preorder.toLT
RelSeries.length
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
RelSeries.last_drop
bddAbove_def
ENat.iSup_coe_eq_top
iSup_subtype'
height_eq_iSup_last_eq
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
finiteDimensionalOrder_iff_krullDim_ne_bot_and_top πŸ“–mathematicalβ€”FiniteDimensionalOrderβ€”LTSeries.nonempty_of_finiteDimensionalOrder
krullDim_eq_bot_iff
not_nonempty_iff
height_add_one_le πŸ“–mathematicalPreorder.toLTENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
height
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”height_mono
le_of_lt
top_add
add_one_le_of_lt
height_strictMono
height_bot πŸ“–mathematicalβ€”height
Bot.bot
OrderBot.toBot
Preorder.toLE
ENat
instZeroENat
β€”β€”
height_coe_withBot πŸ“–mathematicalβ€”height
WithBot
WithBot.instPreorder
WithBot.some
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”le_antisymm
height_le
ne_bot_of_gt
LTSeries.strictMono
compare_gt_iff_gt
WithBot.coe_unbot
RelSeries.step
length_le_height_last
Nat.cast_one
Nat.cast_zero
iSupβ‚‚_le
WithBot.coe_strictMono
le_iSupβ‚‚_of_le
RelSeries.last_cons
RelSeries.cons_length
Nat.cast_add
height_coe_withTop πŸ“–mathematicalβ€”height
WithTop
WithTop.instPreorder
WithTop.some
β€”le_antisymm
height_le
WithTop.lt_top_iff_ne_top
lt_of_le_of_lt
LTSeries.monotone
RelSeries.last.eq_1
WithTop.coe_untop
RelSeries.step
length_le_height_last
WithTop.coe_strictMono
le_iSupβ‚‚_of_le
height_enat πŸ“–mathematicalβ€”height
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”height_top_eq_krullDim
krullDim_enat
height_coe_withTop
height_nat
height_eq_coe_add_one_iff πŸ“–mathematicalβ€”height
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
ENat.instNatCast
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Top.top
instTopENat
Preorder.toLE
β€”le_antisymm_iff
coe_lt_height_iff
Nat.cast_add
Nat.cast_one
height_le_coe_iff
height_eq_coe_iff πŸ“–mathematicalβ€”height
ENat
ENat.instNatCast
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Top.top
instTopENat
instSubENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Nat.cast_zero
zero_tsub
Nat.cast_add
Nat.cast_one
Unique.instSubsingleton
height_eq_coe_add_one_iff
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
height_eq_coe_iff_minimal_le_height πŸ“–mathematicalβ€”height
ENat
ENat.instNatCast
Minimal
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”Nat.cast_zero
Nat.cast_add
Nat.cast_one
RelSeries.eraseLast_last_rel_last
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
length_le_height_last
height_eq_iSup_last_eq πŸ“–mathematicalβ€”height
iSup
ENat
LTSeries
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
RelSeries.last
setOf
Preorder.toLT
ENat.instNatCast
RelSeries.length
β€”eq_of_forall_ge_iff
height_le_iff'
iSupβ‚‚_le_iff
height_eq_iSup_lt_height πŸ“–mathematicalβ€”height
iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Preorder.toLT
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”le_antisymm
height_le
Nat.cast_zero
le_iSup_of_le
RelSeries.eraseLast_last_rel_last
le_iSupβ‚‚_of_le
Nat.cast_add
Nat.cast_one
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
iSupβ‚‚_le
RelSeries.last_snoc
height_eq_index_of_length_eq_height_last πŸ“–mathematicalENat
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
height
RelSeries.last
RelSeries.toFunβ€”le_antisymm
height_le
RelSeries.head_drop
length_le_height_last
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Nat.cast_add
RelSeries.last_smash
RelSeries.last_drop
index_le_height
height_eq_krullDim_Iic πŸ“–mathematicalβ€”WithBot.some
ENat
height
krullDim
Set.Elem
Set.Iic
Subtype.preorder
Set
Set.instMembership
β€”height_top_eq_krullDim
height.eq_1
le_antisymm
iSup_le
le_trans
LTSeries.monotone
LTSeries.strictMono
iSup_congr_Prop
iSup_pos
le_iSup
LTSeries.map_length
le_iSupβ‚‚
height_eq_top_iff πŸ“–mathematicalβ€”height
Top.top
ENat
instTopENat
RelSeries.last
setOf
Preorder.toLT
RelSeries.length
β€”exists_series_of_le_height
height_eq_iSup_last_eq
iSup_subtype'
ENat.iSup_coe_eq_top
bddAbove_def
Mathlib.Tactic.Push.not_forall_eq
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
height_eq_zero πŸ“–mathematicalβ€”height
ENat
instZeroENat
IsMin
Preorder.toLE
β€”Nat.cast_zero
height_le_coe_iff
height_int πŸ“–mathematicalβ€”height
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
Top.top
ENat
instTopENat
β€”height_of_noMinOrder
LinearOrderedAddCommGroup.to_noMinOrder
Int.instIsOrderedAddMonoid
Infinite.instNontrivial
Int.infinite
height_le πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
heightβ€”height_le_iff
lt_of_lt_of_le
RelSeries.eraseLast_last_rel_last
RelSeries.last_snoc
Nat.cast_zero
height_le_coe_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
height
ENat.instNatCast
Preorder.toLT
β€”height_eq_iSup_lt_height
iSupβ‚‚_le_iff
top_add
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
height_le_height_apply_of_strictMono πŸ“–mathematicalStrictMonoENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
height
β€”height_eq_iSup_last_eq
iSup_congr_Prop
iSupβ‚‚_le
le_iSupβ‚‚_of_le
height_le_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
height
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
β€”height.eq_1
iSupβ‚‚_le_iff
height_le_iff' πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
height
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
β€”height_le_iff
le_of_eq
height_le
height_le_krullDim πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
WithBot.some
height
krullDim
β€”krullDim_eq_iSup_length
height_le
le_iSup_of_le
le_rfl
height_le_of_krullDim_preimage_le πŸ“–mathematicalWithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
Set.Elem
Set.preimage
DFunLike.coe
OrderHom
OrderHom.instFunLike
Set
Set.instSingletonSet
Subtype.preorder
Set.instMembership
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
height
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toMul
ENat.instNatCast
AddMonoidWithOne.toOne
β€”ENat.mul_top
Unique.instSubsingleton
NeZero.one
top_add
Nat.strong_induction_on
height_le_iff
le_of_not_gt
LE.le.lt_of_not_ge
OrderHom.monotone
LE.le.trans
LTSeries.monotone
le_antisymm
le_trans
RelSeries.last_drop
RelSeries.head_drop
RelSeries.step
LTSeries.length_le_krullDim
ENat.coe_lt_coe
LE.le.trans_lt
le_add_left
le_rfl
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
WithBot.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
WithBot.charZero
Nat.instOrderedSub
ENat.ne_top_iff_exists
LT.lt.ne
height_mono
LT.lt.le
ENat.coe_lt_top
height_strictMono
length_le_height_last
not_lt_of_ge
add_le_add_left
covariant_swap_add_of_covariant_add
mul_le_mul_right
CanonicallyOrderedAdd.toMulLeftMono
ENat.coe_one
ENat.coe_add
ENat.coe_le_coe
LT.lt.trans_le
mul_add_one
Distrib.leftDistribClass
add_assoc
add_comm
tsub_le_iff_right
Nat.cast_one
Nat.cast_add
ENat.coe_sub
RelSeries.take_length
height_mono πŸ“–mathematicalβ€”Monotone
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
height
β€”biSup_mono
LE.le.trans
height_nat πŸ“–mathematicalβ€”height
Nat.instPreorder
ENat
ENat.instNatCast
β€”le_antisymm
height_le_coe_iff
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
length_le_height_last
height_ne_zero πŸ“–mathematicalβ€”IsMin
Preorder.toLE
β€”Iff.not
height_eq_zero
height_ofDual πŸ“–mathematicalβ€”height
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
coheight
OrderDual.instPreorder
β€”β€”
height_of_noMinOrder πŸ“–mathematicalβ€”height
Top.top
ENat
instTopENat
β€”coheight_of_noMaxOrder
OrderDual.noMaxOrder
height_orderIso πŸ“–mathematicalβ€”height
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
β€”le_antisymm
OrderIso.symm_apply_apply
height_le_height_apply_of_strictMono
OrderIso.strictMono
height_pos πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
height
IsMin
Preorder.toLE
β€”β€”
height_pos_of_bot_lt πŸ“–mathematicalPreorder.toLT
Bot.bot
OrderBot.toBot
Preorder.toLE
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
height
β€”height_pos
height_strictMono πŸ“–β€”Preorder.toLT
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
height
Top.top
instTopENat
β€”β€”ENat.add_one_le_iff
LT.lt.ne
iSupβ‚‚_le_iff
length_le_height_last
Nat.cast_add
Nat.cast_one
RelSeries.last_snoc
height_toDual πŸ“–mathematicalβ€”height
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
coheight
β€”β€”
height_top_eq_krullDim πŸ“–mathematicalβ€”WithBot.some
ENat
height
Top.top
OrderTop.toTop
Preorder.toLE
krullDim
β€”krullDim_eq_iSup_length
top_nonempty
le_antisymm
height_le
le_iSup_of_le
le_rfl
iSup_le
length_le_height
le_top
index_le_height πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
height
RelSeries.toFun
β€”length_le_height_last
instKrullDimLEOfNatNatOfSubsingleton πŸ“–mathematicalβ€”KrullDimLEβ€”krullDim_nonpos_of_subsingleton
krullDimLE_iff πŸ“–mathematicalβ€”KrullDimLE
WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
krullDim_WithTop πŸ“–mathematicalβ€”krullDim
WithTop
WithTop.instPreorder
WithBot
ENat
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”height_top_eq_krullDim
krullDim_eq_iSup_height_of_nonempty
height_eq_iSup_lt_height
iSup_congr_Prop
Nat.cast_one
ENat.iSup_add
iSup_subtype'
Equiv.iSup_congr
height_coe_withTop
krullDim_enat πŸ“–mathematicalβ€”krullDim
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Top.top
WithBot
WithBot.instTop
instTopENat
β€”krullDim_WithTop
krullDim_of_noMaxOrder
Nat.instNoMaxOrder
top_add
krullDim_eq_bot πŸ“–mathematicalβ€”krullDim
Bot.bot
WithBot
ENat
WithBot.bot
β€”krullDim_eq_bot_iff
krullDim_eq_bot_iff πŸ“–mathematicalβ€”krullDim
Bot.bot
WithBot
ENat
WithBot.bot
IsEmpty
β€”eq_bot_iff
krullDim.eq_1
iSup_le_iff
Fin.isEmpty'
krullDim_eq_iSup_coheight πŸ“–mathematicalβ€”krullDim
iSup
WithBot
ENat
WithBot.instSupSet
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ConditionallyCompletePartialOrderSup.toSupSet
WithBot.some
coheight
β€”isEmpty_or_nonempty
krullDim_eq_bot
ciSup_of_empty
krullDim_eq_iSup_coheight_of_nonempty
WithBot.coe_iSup
OrderTop.bddAbove
krullDim_eq_iSup_coheight_of_nonempty πŸ“–mathematicalβ€”krullDim
WithBot.some
ENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
coheight
β€”krullDim_orderDual
krullDim_eq_iSup_height_of_nonempty
OrderDual.instNonempty
krullDim_eq_iSup_height πŸ“–mathematicalβ€”krullDim
iSup
WithBot
ENat
WithBot.instSupSet
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ConditionallyCompletePartialOrderSup.toSupSet
WithBot.some
height
β€”isEmpty_or_nonempty
krullDim_eq_bot
ciSup_of_empty
krullDim_eq_iSup_height_of_nonempty
WithBot.coe_iSup
OrderTop.bddAbove
krullDim_eq_iSup_height_add_coheight_of_nonempty πŸ“–mathematicalβ€”krullDim
WithBot.some
ENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
height
coheight
β€”le_antisymm
krullDim_eq_iSup_height_of_nonempty
WithBot.coe_le_coe
ciSup_mono
OrderTop.bddAbove
krullDim_eq_iSup_length
iSup_le
WithBot.coe_lt_coe
lt_of_le_of_lt
height_le_krullDim
coheight_le_krullDim
exists_series_of_height_eq_coe
exists_series_of_coheight_eq_coe
le_iSup_of_le
Nat.cast_add
krullDim_eq_iSup_height_of_nonempty πŸ“–mathematicalβ€”krullDim
WithBot.some
ENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
height
β€”le_antisymm
iSup_le
le_iSup_of_le
length_le_height_last
WithBot.unbotD_le_iff
WithBot.coe_iSup
OrderTop.bddAbove
height_le_krullDim
krullDim_eq_iSup_length πŸ“–mathematicalβ€”krullDim
WithBot.some
ENat
iSup
LTSeries
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
β€”WithBot.coe_iSup
OrderTop.bddAbove
RelSeries.instNonempty
krullDim_eq_length_of_finiteDimensionalOrder πŸ“–mathematicalβ€”krullDim
WithBot
ENat
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
RelSeries.length
setOf
Preorder.toLT
LTSeries.longestOf
β€”le_antisymm
iSup_le
WithBot.coe_le_coe
WithTop.coe_le_coe
RelSeries.length_le_length_longestOf
le_iSup
krullDim_eq_of_orderIso πŸ“–mathematicalβ€”krullDimβ€”le_antisymm
krullDim_le_of_strictMono
OrderIso.strictMono
krullDim_eq_one_iff_of_boundedOrder πŸ“–mathematicalβ€”krullDim
PartialOrder.toPreorder
WithBot
ENat
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
IsSimpleOrder
Preorder.toLE
β€”le_antisymm_iff
krullDim_le_one_iff_of_boundedOrder
WithBot.one_le_iff_pos
IsOrderedRing.toZeroLEOneClass
NeZero.one
krullDim_pos_iff_of_orderBot
isSimpleOrder_iff
krullDim_eq_top πŸ“–mathematicalβ€”krullDim
Top.top
WithBot
ENat
WithBot.instTop
instTopENat
β€”le_antisymm
le_top
le_iSup_iff
not_le_of_gt
WithBot.bot_lt_coe
le_refl
not_lt_of_ge
WithBot.some_eq_coe
WithBot.coe_natCast
WithBot.coe_lt_coe
WithTop.some_eq_coe
WithTop.coe_natCast
WithTop.coe_lt_coe
LTSeries.length_withLength
Nat.cast_add
Nat.cast_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
krullDim_eq_top_iff πŸ“–mathematicalβ€”krullDim
Top.top
WithBot
ENat
WithBot.instTop
instTopENat
InfiniteDimensionalOrder
β€”isEmpty_or_nonempty
krullDim_eq_bot
WithBot.nontrivial
finiteDimensionalOrder_or_infiniteDimensionalOrder
krullDim_eq_length_of_finiteDimensionalOrder
krullDim_eq_top
krullDim_eq_zero πŸ“–mathematicalβ€”krullDim
WithBot
ENat
WithBot.zero
instZeroENat
β€”le_antisymm
krullDim_nonpos_of_subsingleton
krullDim_nonneg
krullDim_eq_zero_iff_of_orderBot πŸ“–mathematicalβ€”krullDim
PartialOrder.toPreorder
WithBot
ENat
WithBot.zero
instZeroENat
β€”le_bot_iff
krullDim_nonpos_iff_forall_isMax
Eq.le
bot_le
krullDim_eq_zero
bot_nonempty
krullDim_eq_zero_iff_of_orderTop πŸ“–mathematicalβ€”krullDim
PartialOrder.toPreorder
WithBot
ENat
WithBot.zero
instZeroENat
β€”top_le_iff
krullDim_nonpos_iff_forall_isMin
Eq.le
le_top
krullDim_eq_zero
top_nonempty
krullDim_eq_zero_of_unique πŸ“–mathematicalβ€”krullDim
WithBot
ENat
WithBot.zero
instZeroENat
β€”le_antisymm
krullDim_nonpos_of_subsingleton
Unique.instSubsingleton
krullDim_nonneg
krullDim_int πŸ“–mathematicalβ€”krullDim
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
Top.top
WithBot
ENat
WithBot.instTop
instTopENat
β€”krullDim_of_noMaxOrder
LinearOrderedAddCommGroup.to_noMaxOrder
Int.instIsOrderedAddMonoid
Infinite.instNontrivial
Int.infinite
krullDim_le_of_krullDim_preimage_le πŸ“–mathematicalWithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
Set.Elem
Set.preimage
DFunLike.coe
OrderHom
OrderHom.instFunLike
Set
Set.instSingletonSet
Subtype.preorder
Set.instMembership
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toMul
WithBot.instCommSemiring
LinearOrder.toDecidableEq
instLinearOrderENat
instCanonicallyOrderedAddENat
instNoZeroDivisorsENat
instNontrivialENat
WithBot.one
AddMonoidWithOne.toOne
β€”krullDim_eq_iSup_height
iSup_le_iff
LE.le.trans
WithBot.coe_mono
height_le_of_krullDim_preimage_le
add_le_add_left
WithBot.addRightMono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
mul_le_mul_of_nonneg_left
WithBot.instPosMulMono
IsOrderedRing.toPosMulMono
le_iSup_iff
right_eq_inf
krullDim_le_of_krullDim_preimage_le' πŸ“–mathematicalMonotone
PartialOrder.toPreorder
WithBot
ENat
Preorder.toLE
WithBot.instPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
Set.Elem
Set.preimage
Set
Set.instSingletonSet
Subtype.preorder
Set.instMembership
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toMul
WithBot.instCommSemiring
LinearOrder.toDecidableEq
instLinearOrderENat
instCanonicallyOrderedAddENat
instNoZeroDivisorsENat
instNontrivialENat
WithBot.one
AddMonoidWithOne.toOne
β€”krullDim_le_of_krullDim_preimage_le
krullDim_le_of_strictComono_and_surj πŸ“–mathematicalPreorder.toLTWithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
β€”iSup_le
le_sSup
krullDim_le_of_strictMono πŸ“–mathematicalStrictMonoWithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
β€”iSup_le
le_sSup
krullDim_le_one_iff πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
IsMin
IsMax
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
Mathlib.Tactic.Push.not_forall_eq
LT.lt.not_ge
Nat.cast_zero
WithBot.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
zero_add
Nat.cast_one
Fintype.complete
Nat.instAtLeastTwoHAddOfNat
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
WithBot.charZero
krullDim_le_one_iff_forall_isMax πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
IsMax
β€”β€”
krullDim_le_one_iff_forall_isMin πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
IsMin
β€”β€”
krullDim_le_one_iff_of_boundedOrder πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
β€”β€”
krullDim_lt_coe_iff πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLT
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
RelSeries.length
setOf
β€”krullDim.eq_1
WithBot.coe_natCast
ENat.coe_zero
bot_eq_zero
WithBot.lt_coe_bot
Nat.instCanonicallyOrderedAdd
Nat.cast_add
Nat.cast_one
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
WithBot.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
WithBot.charZero
Nat.instNoMaxOrder
krullDim_nat πŸ“–mathematicalβ€”krullDim
Nat.instPreorder
Top.top
WithBot
ENat
WithBot.instTop
instTopENat
β€”krullDim_of_noMaxOrder
Nat.instNoMaxOrder
krullDim_ne_bot_iff πŸ“–β€”β€”β€”β€”krullDim_eq_bot_iff
not_isEmpty_iff
krullDim_ne_bot_of_finiteDimensionalOrder πŸ“–β€”β€”β€”β€”finiteDimensionalOrder_iff_krullDim_ne_bot_and_top
krullDim_ne_top_of_finiteDimensionalOrder πŸ“–β€”β€”β€”β€”finiteDimensionalOrder_iff_krullDim_ne_bot_and_top
krullDim_nonneg πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
WithBot.zero
instZeroENat
krullDim
β€”krullDim_nonneg_iff
krullDim_nonneg_iff πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
WithBot.zero
instZeroENat
krullDim
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
krullDim_eq_bot_iff
WithBot.lt_coe_bot
bot_eq_zero
WithBot.coe_zero
krullDim_nonpos_iff_forall_isMax πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
WithBot.zero
instZeroENat
IsMax
β€”LE.le.not_gt
Matrix.cons_val_fin_one
Nat.cast_one
WithBot.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
NeZero.one
WithBot.nontrivial
Nat.cast_zero
krullDim_nonpos_iff_forall_isMin πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
WithBot.zero
instZeroENat
IsMin
β€”forall_swap
krullDim_nonpos_of_subsingleton πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
krullDim
WithBot.zero
instZeroENat
β€”krullDim_nonpos_iff_forall_isMax
Eq.ge
krullDim_of_isSimpleOrder πŸ“–mathematicalβ€”krullDim
PartialOrder.toPreorder
WithBot
ENat
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”krullDim_eq_one_iff_of_boundedOrder
krullDim_of_noMaxOrder πŸ“–mathematicalβ€”krullDim
Top.top
WithBot
ENat
WithBot.instTop
instTopENat
β€”krullDim_eq_iSup_coheight
coheight_of_noMaxOrder
ciSup_const
krullDim_of_noMinOrder πŸ“–mathematicalβ€”krullDim
Top.top
WithBot
ENat
WithBot.instTop
instTopENat
β€”krullDim_eq_iSup_height
height_of_noMinOrder
ciSup_const
krullDim_orderDual πŸ“–mathematicalβ€”krullDim
OrderDual
OrderDual.instPreorder
β€”le_antisymm
iSup_le
le_sSup
krullDim_pos_iff πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLT
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
WithBot.zero
instZeroENat
krullDim
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
krullDim_pos_iff_of_orderBot πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLT
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
WithBot.zero
instZeroENat
krullDim
Nontrivial
β€”not_subsingleton_iff_nontrivial
krullDim_eq_zero_iff_of_orderBot
lt_or_lt_iff_ne
bot_nonempty
krullDim_pos_iff_of_orderTop πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLT
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
WithBot.zero
instZeroENat
krullDim
Nontrivial
β€”not_subsingleton_iff_nontrivial
krullDim_eq_zero_iff_of_orderTop
lt_or_lt_iff_ne
top_nonempty
krullDim_withBot πŸ“–mathematicalβ€”krullDim
WithBot
WithBot.instPreorder
ENat
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”krullDim_orderDual
krullDim_WithTop
OrderDual.instNonempty
le_krullDim_iff πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
krullDim
RelSeries.length
setOf
Preorder.toLT
β€”isEmpty_or_nonempty
krullDim_eq_bot
RelSeries.instIsEmpty
finiteDimensionalOrder_or_infiniteDimensionalOrder
krullDim_eq_length_of_finiteDimensionalOrder
Nat.cast_le
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
WithBot.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
WithBot.charZero
LTSeries.longestOf_is_longest
krullDim_eq_top
SetRel.InfiniteDimensional.exists_relSeries_with_length
length_le_coheight πŸ“–mathematicalPreorder.toLE
RelSeries.head
setOf
Preorder.toLT
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
RelSeries.length
coheight
β€”length_le_height
RelSeries.last_reverse
length_le_coheight_head πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
coheight
RelSeries.head
β€”length_le_coheight
le_rfl
length_le_height πŸ“–mathematicalPreorder.toLE
RelSeries.last
setOf
Preorder.toLT
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
RelSeries.length
height
β€”lt_of_lt_of_le
RelSeries.step
le_iSupβ‚‚_of_le
RelSeries.last_snoc
le_rfl
Nat.cast_one
Nat.cast_add
Nat.cast_zero
length_le_height_last πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
height
RelSeries.last
β€”length_le_height
le_rfl
one_le_krullDim_iff πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
krullDim
Preorder.toLT
β€”krullDim_pos_iff
Nat.cast_zero
WithBot.add_one_le_iff
zero_add
one_lt_height_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
height
β€”ENat.add_one_le_iff
ENat.one_ne_top
Nat.instAtLeastTwoHAddOfNat
one_add_one_eq_two
exists_series_of_le_height
RelSeries.rel_of_lt
SetRel.instIsTransSetOfProdMatch_1PropOfIsTrans
instIsTransLt
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instCharZero
List.isChain_pair
RelSeries.toList_fromListIsChain
length_le_height
Eq.le
rev_index_le_coheight πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
RelSeries.length
setOf
Preorder.toLT
coheight
RelSeries.toFun
β€”index_le_height

Order.IsMax

Theorems

NameKindAssumesProvesValidatesDepends On
coheight_eq_zero πŸ“–mathematicalIsMax
Preorder.toLE
Order.coheight
ENat
instZeroENat
β€”Order.coheight_eq_zero

Order.IsMin

Theorems

NameKindAssumesProvesValidatesDepends On
height_eq_zero πŸ“–mathematicalIsMin
Preorder.toLE
Order.height
ENat
instZeroENat
β€”Order.height_eq_zero

Order.KrullDimLE

Theorems

NameKindAssumesProvesValidatesDepends On
krullDim_le πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Order.krullDim
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
mono πŸ“–mathematicalβ€”Order.KrullDimLEβ€”LE.le.trans
krullDim_le
Nat.cast_le
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
WithBot.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
WithBot.charZero

Order.LTSeries

Theorems

NameKindAssumesProvesValidatesDepends On
length_le_krullDim πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
RelSeries.length
setOf
Preorder.toLT
Order.krullDim
β€”le_sSup

---

← Back to Index