Documentation Verification Report

LatticeIntervals

📁 Source: Mathlib/Order/LatticeIntervals.lean

Statistics

MetricCount
DefinitionsinstBoundedOrderElemOfFactLe, instOrderBotElemOfFactLe, instOrderTopElemOfFactLe, lattice, semilatticeInf, semilatticeSup, boundedOrder, distribLattice, lattice, orderBot, orderTop, semilatticeInf, semilatticeSup, orderBot, semilatticeInf, instBoundedOrderElemOfOrderBot, instLatticeElem, orderBot, orderTop, semilatticeInf, semilatticeSup, semilatticeInf, orderTop, semilatticeSup, semilatticeSup
25
Theoremscodisjoint_iff, coe_bot, coe_inf, coe_sup, coe_top, disjoint_iff, isCompl_iff, codisjoint_iff, coe_bot, coe_inf, coe_sup, coe_top, disjoint_iff, isCompl_iff, coe_bot, coe_inf, disjoint_iff, codisjoint_iff, coe_bot, coe_inf, coe_sup, coe_top, complementedLattice_iff, disjoint_iff, eq_top_iff, isCompl_iff, coe_inf, codisjoint_iff, coe_sup, coe_top, coe_sup
31
Total56

Set.Icc

Definitions

NameCategoryTheorems
instBoundedOrderElemOfFactLe 📖CompOp
2 mathmath: isCompl_iff, IsModularLattice.complementedLattice_Icc
instOrderBotElemOfFactLe 📖CompOp
9 mathmath: Icc_isBoundaryPoint_bot, ContinuousMap.concatCM_left, disjoint_iff, IccLeftChart_extend_bot, coe_bot, ContinuousMap.concatCM_right, boundary_Icc, boundary_product, IccLeftChart_extend_bot_mem_frontier
instOrderTopElemOfFactLe 📖CompOp
9 mathmath: ContinuousMap.concatCM_left, codisjoint_iff, IccRightChart_extend_top_mem_frontier, ContinuousMap.concatCM_right, coe_top, IccRightChart_extend_top, boundary_Icc, boundary_product, Icc_isBoundaryPoint_top
lattice 📖CompOp
4 mathmath: Path.range_subpathAux, unitInterval.volume_uIcc, Path.range_subpath, IsModularLattice.complementedLattice_Icc
semilatticeInf 📖CompOp
1 mathmath: coe_inf
semilatticeSup 📖CompOp
1 mathmath: coe_sup

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_iff 📖mathematicalCodisjoint
Set.Elem
Set.Icc
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Subtype.partialOrder
Set
Set.instMembership
instOrderTopElemOfFactLe
SemilatticeSup.toMax
coe_bot 📖mathematicalSet
Set.instMembership
Set.Icc
Bot.bot
Set.Elem
OrderBot.toBot
Preorder.toLE
instOrderBotElemOfFactLe
coe_inf 📖mathematicalSet
Set.instMembership
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Set.Elem
SemilatticeInf.toMin
semilatticeInf
coe_sup 📖mathematicalSet
Set.instMembership
Set.Icc
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Set.Elem
SemilatticeSup.toMax
semilatticeSup
coe_top 📖mathematicalSet
Set.instMembership
Set.Icc
Top.top
Set.Elem
OrderTop.toTop
Preorder.toLE
instOrderTopElemOfFactLe
disjoint_iff 📖mathematicalDisjoint
Set.Elem
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Subtype.partialOrder
Set
Set.instMembership
instOrderBotElemOfFactLe
SemilatticeInf.toMin
isCompl_iff 📖mathematicalIsCompl
Set.Elem
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Subtype.partialOrder
Set
Set.instMembership
instBoundedOrderElemOfFactLe
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
isCompl_iff
disjoint_iff
codisjoint_iff

Set.Ici

Definitions

NameCategoryTheorems
boundedOrder 📖CompOp
3 mathmath: IsModularLattice.complementedLattice_Ici, isCompl_iff, Set.isSimpleOrder_Ici_iff_isCoatom
distribLattice 📖CompOp
lattice 📖CompOp
2 mathmath: IsModularLattice.complementedLattice_Ici, IsModularLattice.isModularLattice_Ici
orderBot 📖CompOp
8 mathmath: coe_bot, isAtom_iff, CategoryTheory.TransfiniteCompositionOfShape.ici_F, covBy_iff_atom_Ici, disjoint_iff, CategoryTheory.TransfiniteCompositionOfShape.ici_isoBot, CategoryTheory.TransfiniteCompositionOfShape.ici_isColimit, CategoryTheory.TransfiniteCompositionOfShape.ici_incl
orderTop 📖CompOp
5 mathmath: isCoatomic_iff_forall_isCoatomic_Ici, codisjoint_iff, IsCoatomic.Set.Ici.isCoatomic, coe_top, IsCoatom.Ici
semilatticeInf 📖CompOp
1 mathmath: coe_inf
semilatticeSup 📖CompOp
1 mathmath: coe_sup

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_iff 📖mathematicalCodisjoint
Set.Elem
Set.Ici
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Subtype.partialOrder
Set
Set.instMembership
orderTop
coe_bot 📖mathematicalSet
Set.instMembership
Set.Ici
Bot.bot
Set.Elem
OrderBot.toBot
Preorder.toLE
orderBot
coe_inf 📖mathematicalSet
Set.instMembership
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Set.Elem
SemilatticeInf.toMin
semilatticeInf
coe_sup 📖mathematicalSet
Set.instMembership
Set.Ici
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Set.Elem
SemilatticeSup.toMax
semilatticeSup
coe_top 📖mathematicalSet
Set.instMembership
Set.Ici
Top.top
Set.Elem
OrderTop.toTop
Preorder.toLE
orderTop
disjoint_iff 📖mathematicalDisjoint
Set.Elem
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Subtype.partialOrder
Set
Set.instMembership
orderBot
SemilatticeInf.toMin
isCompl_iff 📖mathematicalIsCompl
Set.Elem
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Subtype.partialOrder
Set
Set.instMembership
boundedOrder
SemilatticeInf.toMin
Codisjoint
isCompl_iff
disjoint_iff
codisjoint_iff

Set.Ico

Definitions

NameCategoryTheorems
orderBot 📖CompOp
2 mathmath: coe_bot, disjoint_iff
semilatticeInf 📖CompOp
1 mathmath: coe_inf

Theorems

NameKindAssumesProvesValidatesDepends On
coe_bot 📖mathematicalSet
Set.instMembership
Set.Ico
PartialOrder.toPreorder
Bot.bot
Set.Elem
OrderBot.toBot
Preorder.toLE
orderBot
coe_inf 📖mathematicalSet
Set.instMembership
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Set.Elem
SemilatticeInf.toMin
semilatticeInf
disjoint_iff 📖mathematicalDisjoint
Set.Elem
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Subtype.partialOrder
Set
Set.instMembership
orderBot
SemilatticeInf.toMin

Set.Iic

Definitions

NameCategoryTheorems
instBoundedOrderElemOfOrderBot 📖CompOp
5 mathmath: isCompl_inf_inf_of_isCompl_of_le, complementedLattice_iff, Set.isSimpleOrder_Iic_iff_isAtom, isCompl_iff, IsModularLattice.complementedLattice_Iic
instLatticeElem 📖CompOp
3 mathmath: complementedLattice_iff, IsModularLattice.isModularLattice_Iic, IsModularLattice.complementedLattice_Iic
orderBot 📖CompOp
9 mathmath: CategoryTheory.TransfiniteCompositionOfShape.iic_isoBot, isAtomic_iff_forall_isAtomic_Iic, CategoryTheory.TransfiniteCompositionOfShape.iic_isColimit, IsAtomic.Set.Iic.isAtomic, disjoint_iff, IsAtom.Iic, CategoryTheory.TransfiniteCompositionOfShape.iic_F, CategoryTheory.TransfiniteCompositionOfShape.iic_incl_app, coe_bot
orderTop 📖CompOp
7 mathmath: covBy_iff_coatom_Iic, CategoryTheory.TransfiniteCompositionOfShape.iic_isColimit, CompleteLattice.Iic_coatomic_of_compact_element, codisjoint_iff, coe_top, isCoatom_iff, eq_top_iff
semilatticeInf 📖CompOp
1 mathmath: coe_inf
semilatticeSup 📖CompOp
1 mathmath: coe_sup

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_iff 📖mathematicalCodisjoint
Set.Elem
Set.Iic
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Subtype.partialOrder
Set
Set.instMembership
orderTop
SemilatticeSup.toMax
eq_top_iff
coe_bot 📖mathematicalSet
Set.instMembership
Set.Iic
Bot.bot
Set.Elem
OrderBot.toBot
Preorder.toLE
orderBot
coe_inf 📖mathematicalSet
Set.instMembership
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Set.Elem
SemilatticeInf.toMin
semilatticeInf
coe_sup 📖mathematicalSet
Set.instMembership
Set.Iic
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Set.Elem
SemilatticeSup.toMax
semilatticeSup
coe_top 📖mathematicalSet
Set.instMembership
Set.Iic
Top.top
Set.Elem
OrderTop.toTop
Preorder.toLE
orderTop
complementedLattice_iff 📖mathematicalComplementedLattice
Set.Elem
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeElem
instBoundedOrderElemOfOrderBot
Preorder.toLE
SemilatticeInf.toMin
Bot.bot
OrderBot.toBot
SemilatticeSup.toMax
Lattice.toSemilatticeSup
disjoint_iff 📖mathematicalDisjoint
Set.Elem
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Subtype.partialOrder
Set
Set.instMembership
orderBot
eq_top_iff 📖mathematicalTop.top
Set.Elem
Set.Iic
OrderTop.toTop
Preorder.toLE
Set
Set.instMembership
orderTop
isCompl_iff 📖mathematicalIsCompl
Set.Elem
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Subtype.partialOrder
Set
Set.instMembership
instBoundedOrderElemOfOrderBot
Disjoint
SemilatticeSup.toMax
Lattice.toSemilatticeSup
isCompl_iff
disjoint_iff
codisjoint_iff

Set.Iio

Definitions

NameCategoryTheorems
semilatticeInf 📖CompOp
1 mathmath: coe_inf

Theorems

NameKindAssumesProvesValidatesDepends On
coe_inf 📖mathematicalSet
Set.instMembership
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Set.Elem
SemilatticeInf.toMin
semilatticeInf

Set.Ioc

Definitions

NameCategoryTheorems
orderTop 📖CompOp
2 mathmath: coe_top, codisjoint_iff
semilatticeSup 📖CompOp
1 mathmath: coe_sup

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_iff 📖mathematicalCodisjoint
Set.Elem
Set.Ioc
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Subtype.partialOrder
Set
Set.instMembership
orderTop
SemilatticeSup.toMax
coe_sup 📖mathematicalSet
Set.instMembership
Set.Ioc
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Set.Elem
SemilatticeSup.toMax
semilatticeSup
coe_top 📖mathematicalSet
Set.instMembership
Set.Ioc
PartialOrder.toPreorder
Top.top
Set.Elem
OrderTop.toTop
Preorder.toLE
orderTop

Set.Ioi

Definitions

NameCategoryTheorems
semilatticeSup 📖CompOp
1 mathmath: coe_sup

Theorems

NameKindAssumesProvesValidatesDepends On
coe_sup 📖mathematicalSet
Set.instMembership
Set.Ioi
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Set.Elem
SemilatticeSup.toMax
semilatticeSup

---

← Back to Index