Documentation Verification Report

LiminfLimsup

πŸ“ Source: Mathlib/Order/LiminfLimsup.lean

Statistics

MetricCount
Definitionsbliminf, blimsup, liminf, liminf_reparam, limsInf, limsSup, limsup, limsup_reparam
8
Theoremsapply_liminf_iterate, apply_limsup_iterate, blimsup_eq_iInf_iSup, liminf_eq_ciSup_ciInf, liminf_eq_iSup_iInf, liminf_eq_ite, liminf_eq_sSup_iUnion_iInter, liminf_eq_sSup_univ_of_empty, limsInf_eq_iSup_sInf, limsSup_eq_iInf_sSup, limsup_eq_ciInf_ciSup, limsup_eq_iInf_iSup, limsup_eq_ite, limsup_eq_sInf_iUnion_iInter, limsup_eq_sInf_univ_of_empty, bliminf_antitone, bliminf_antitone_filter, bliminf_congr, bliminf_congr', bliminf_eq, bliminf_eq_iSup_biInf, bliminf_eq_iSup_biInf_of_nat, bliminf_eq_liminf, bliminf_eq_liminf_subtype, bliminf_false, bliminf_inf_not, bliminf_not_inf, bliminf_or_eq_inf, bliminf_or_le_inf, bliminf_or_le_inf_aux_left, bliminf_or_le_inf_aux_right, bliminf_sup_le_and, bliminf_sup_le_and_aux_left, bliminf_sup_le_and_aux_right, bliminf_sup_le_inf_aux_left, bliminf_sup_le_inf_aux_right, bliminf_sup_le_or_aux_left, bliminf_sup_le_or_aux_right, bliminf_true, blimsup_and_le_inf, blimsup_congr, blimsup_congr', blimsup_eq, blimsup_eq_iInf_biSup, blimsup_eq_iInf_biSup_of_nat, blimsup_eq_limsup, blimsup_eq_limsup_subtype, blimsup_false, blimsup_mono, blimsup_monotone_filter, blimsup_not_sup, blimsup_or_eq_sup, blimsup_sup_le_or, blimsup_sup_not, blimsup_true, bliminf_set_eq, blimsup_set_eq, liminf_set_eq, limsup_set_eq, eventually_add_neg_lt_of_le_liminf, eventually_lt_add_pos_of_limsup_le, eventually_lt_of_limsup_lt, eventually_lt_of_lt_liminf, exists_forall_mem_of_hasBasis_mem_blimsup, exists_forall_mem_of_hasBasis_mem_blimsup', exists_lt_of_le_liminf, exists_lt_of_limsup_le, frequently_lt_of_liminf_lt, frequently_lt_of_limsInf_lt, frequently_lt_of_lt_limsSup, frequently_lt_of_lt_limsup, gt_mem_sets_of_limsInf_gt, iInf_le_liminf, inf_liminf, inf_limsup, le_liminf_iff, le_liminf_iff', le_liminf_of_le, le_limsInf_of_le, le_limsSup_of_le, le_limsup_iff, le_limsup_iff', le_limsup_of_frequently_le, le_limsup_of_frequently_le', le_limsup_of_le, liminf_bot, liminf_comp, liminf_compl, liminf_congr, liminf_const, liminf_const_top, liminf_eq, liminf_eq_iSup_iInf, liminf_eq_iSup_iInf_of_nat, liminf_eq_iSup_iInf_of_nat', liminf_eq_sSup_sInf, liminf_le_iff, liminf_le_iff', liminf_le_liminf, liminf_le_liminf_of_le, liminf_le_limsup, liminf_le_limsup_of_frequently_le, liminf_le_of_frequently_le, liminf_le_of_frequently_le', liminf_le_of_le, liminf_nat_add, liminf_piecewise, liminf_sdiff, liminf_sup_filter, liminf_top_eq_ciInf, liminf_top_eq_iInf, limsInf_bot, limsInf_eq_iSup_sInf, limsInf_le_limsInf, limsInf_le_limsInf_of_le, limsInf_le_limsSup, limsInf_le_of_le, limsInf_principal_eq_csSup, limsInf_principal_eq_sInf, limsInf_top, limsSup_bot, limsSup_eq_iInf_sSup, limsSup_le_limsSup, limsSup_le_limsSup_of_le, limsSup_le_of_le, limsSup_principal_eq_csSup, limsSup_principal_eq_sSup, limsSup_top, limsup_bot, limsup_comp, limsup_compl, limsup_congr, limsup_const, limsup_const_bot, limsup_eq, limsup_eq_iInf_iSup, limsup_eq_iInf_iSup_of_nat, limsup_eq_iInf_iSup_of_nat', limsup_eq_sInf_sSup, limsup_le_iSup, limsup_le_iff, limsup_le_iff', limsup_le_limsup, limsup_le_limsup_of_le, limsup_le_of_le, limsup_nat_add, limsup_piecewise, limsup_sdiff, limsup_sup_filter, limsup_top_eq_ciSup, limsup_top_eq_iSup, lt_mem_sets_of_limsSup_lt, mem_liminf_iff_eventually_mem, mem_limsup_iff_frequently_mem, mono_bliminf, mono_bliminf', mono_blimsup, mono_blimsup', sdiff_liminf, sdiff_limsup, sup_liminf, sup_limsup, l_limsup_le, apply_bliminf, apply_blimsup, liminf_apply, limsup_apply, liminf_finset_inf, liminf_finset_inf', liminf_min, limsup_finset_sup, limsup_finset_sup', limsup_max, le_apply_bliminf, apply_blimsup_le
175
Total183

CompleteLatticeHom

Theorems

NameKindAssumesProvesValidatesDepends On
apply_liminf_iterate πŸ“–mathematicalβ€”DFunLike.coe
CompleteLatticeHom
instFunLike
Filter.liminf
CompleteLattice.toConditionallyCompleteLattice
Nat.iterate
Filter.atTop
Nat.instPreorder
β€”apply_limsup_iterate
apply_limsup_iterate πŸ“–mathematicalβ€”DFunLike.coe
CompleteLatticeHom
instFunLike
Filter.limsup
CompleteLattice.toConditionallyCompleteLattice
Nat.iterate
Filter.atTop
Nat.instPreorder
β€”Filter.limsup_eq_iInf_iSup_of_nat'
map_iInf
CompleteLatticeHomClass.tosInfHomClass
instCompleteLatticeHomClass
map_iSup
FrameHomClass.tosSupHomClass
CompleteLatticeHomClass.toFrameHomClass
Function.iterate_succ'
iInf_split
iInf_nat_gt_zero_eq
iInf_congr_Prop
iInf_iInf_eq_left
add_zero
LE.le.trans
iInf_le
zero_add
le_iSup

Filter

Definitions

NameCategoryTheorems
bliminf πŸ“–CompOp
27 mathmath: sInfHom.le_apply_bliminf, bliminf_congr', bliminf_sup_le_and_aux_right, bliminf_inf_not, bliminf_sup_le_and_aux_left, bliminf_sup_le_and, bliminf_antitone, bliminf_true, bliminf_eq_iSup_biInf_of_nat, mono_bliminf, bliminf_or_le_inf, bliminf_or_eq_inf, cofinite.bliminf_set_eq, MeasurableSet.measurableSet_bliminf, bliminf_eq, mono_bliminf', bliminf_or_le_inf_aux_left, bliminf_congr, bliminf_antitone_filter, bliminf_not_inf, bliminf_or_le_inf_aux_right, bliminf_eq_liminf_subtype, bliminf_eq_iSup_biInf, bliminf_false, liminf_piecewise, OrderIso.apply_bliminf, bliminf_eq_liminf
blimsup πŸ“–CompOp
36 mathmath: bliminf_sup_le_or_aux_right, blimsup_and_le_inf, blimsup_eq_limsup, blimsup_true, blimsup_eq, blimsup_thickening_mul_ae_eq_aux, bliminf_sup_le_or_aux_left, blimsup_cthickening_ae_le_of_eventually_mul_le_aux, blimsup_cthickening_ae_le_of_eventually_mul_le, blimsup_eq_iInf_biSup, blimsup_sup_not, bliminf_sup_le_inf_aux_left, bliminf_sup_le_inf_aux_right, mem_add_wellApproximable_iff, blimsup_congr', mem_wellApproximable_iff, blimsup_eq_limsup_subtype, mono_blimsup, MeasurableSet.measurableSet_blimsup, HasBasis.blimsup_eq_iInf_iSup, blimsup_cthickening_ae_eq_blimsup_thickening, cofinite.blimsup_set_eq, blimsup_mono, limsup_piecewise, OrderIso.apply_blimsup, blimsup_thickening_mul_ae_eq, blimsup_sup_le_or, blimsup_not_sup, blimsup_eq_iInf_biSup_of_nat, blimsup_cthickening_mul_ae_eq, blimsup_false, blimsup_or_eq_sup, blimsup_monotone_filter, blimsup_congr, mono_blimsup', sSupHom.apply_blimsup_le
liminf πŸ“–CompOp
133 mathmath: liminf_const_sub, liminf_eq, HasBasis.liminf_eq_ite, sdiff_limsup, Antitone.map_limsup_of_continuousAt, ENNReal.le_liminf_mul, liminf_comp, MeasureTheory.liminf_ae_eq_of_forall_ae_eq, bliminf_inf_not, liminf_const_top, LowerSemicontinuousOn.le_liminf, MeasureTheory.Lp.eLpNorm_exponent_top_lim_le_liminf_eLpNorm_exponent_top, le_limsup_add, MeasureTheory.measure_liminf_cofinite_eq_zero, liminf_eq_iSup_iInf_of_nat', ENNReal.limsup_liminf_le_liminf_limsup, limsup_compl, MeasureTheory.Measure.hausdorffMeasure_le_liminf_sum, spectrum.spectralRadius_le_liminf_pow_nnnorm_pow_one_div, bliminf_true, ENNReal.liminf_toReal_eq, Antitone.map_limsSup_of_continuousAt, lowerSemicontinuous_iff_le_liminf, MeasureTheory.Measure.QuasiMeasurePreserving.liminf_preimage_iterate_ae_eq, MeasureTheory.Measure.mkMetric_le_liminf_tsum, Real.liminf_of_not_isBoundedUnder, liminf_eq_top, EReal.limsup_neg, liminf_le_iff', LowerSemicontinuousWithinAt.le_liminf, LowerSemicontinuousAt.le_liminf, liminf_add_le, liminf_le_of_frequently_le', ENNReal.liminf_sub_const, MeasureTheory.limsup_measure_closed_le_iff_liminf_measure_open_ge, liminf_add_const, MeasureTheory.lintegral_liminf_le, liminf_sup_filter, liminf_eq_sSup_sInf, CompleteLatticeHom.apply_liminf_iterate, liminf_sub_const, ENNReal.liminf_mul_le, EReal.le_liminf_add, OrderIso.liminf_apply, MeasureTheory.le_liminf_measure_open_of_forall_tendsto_measure, EReal.liminf_add_le, ENNReal.liminf_const_sub, liminf_const, MeasureTheory.Lp.eLpNorm_lim_le_liminf_eLpNorm, MeasureTheory.ProbabilityMeasure.le_liminf_measure_open_of_tendsto, le_limsup_mul, Real.liminf_of_not_isCoboundedUnder, liminf_congr, MeasureTheory.ae_bdd_liminf_atTop_rpow_of_eLpNorm_bdd, ENNReal.essSup_liminf_le, liminf_compl, liminf_le_of_frequently_le, LowerSemicontinuous.le_liminf, HasBasis.liminf_eq_iSup_iInf, MeasureTheory.Lp.eLpNorm'_lim_eq_lintegral_liminf, liminf_sdiff, le_liminf_iff', eventually_liminf_le, EReal.le_limsup_mul, ENNReal.ofNNReal_liminf, EReal.le_liminf_mul, liminf_eq_iSup_iInf_of_nat, Measurable.liminf', MeasureTheory.measure_liminf_atTop_eq_zero, HasBasis.liminf_eq_sSup_univ_of_empty, MeasureTheory.Measure.hausdorffMeasure_le_liminf_tsum, Tendsto.liminf_eq, MeasurableSet.measurableSet_liminf, EReal.liminf_neg, cofinite.liminf_set_eq, EReal.liminf_mul_le, lowerSemicontinuousWithinAt_iff_le_liminf, Monotone.map_limsInf_of_continuousAt, Measurable.liminf, liminf_le_limsup_of_frequently_le, liminf_mul_le, lowerSemicontinuousAt_iff_le_liminf, liminf_le_iff, liminf_le_limsup, liminf_eq_iSup_iInf, HasBasis.liminf_eq_sSup_iUnion_iInter, inf_liminf, MeasureTheory.ae_bdd_liminf_atTop_of_eLpNorm_bdd, ENNReal.liminf_add_of_right_tendsto_zero, liminf_finset_inf', MonotoneOn.exists_tendsto_deriv_liminf_lintegral_enorm_le, liminf_le_liminf, ENNReal.tsum_eq_liminf_sum_nat, EReal.le_limsup_add, liminf_nat_add, iInf_le_liminf, liminf_bot, MeasureTheory.le_measure_compl_liminf_of_limsup_measure_le, MeasureTheory.Measure.mkMetric_le_liminf_sum, MeasureTheory.lintegral_enorm_le_liminf_of_tendsto, NNReal.liminf_of_not_isCoboundedUnder, MeasureTheory.Lp.eLpNorm_exponent_top_lim_eq_essSup_liminf, bliminf_not_inf, sdiff_liminf, le_liminf_add, le_liminf_mul, liminf_top_eq_iInf, ENNReal.liminf_add_of_left_tendsto_zero, liminf_finset_inf, liminf_top_eq_ciInf, ENNReal.limsup_const_sub, ENNReal.le_limsup_mul, bliminf_eq_liminf_subtype, MeasureTheory.lintegral_liminf_le', ENNReal.inv_liminf, ENNReal.inv_limsup, NNReal.toReal_liminf, liminf_le_of_le, liminf_piecewise, le_liminf_iff, sup_liminf, FormalMultilinearSeries.radius_eq_liminf, liminf_min, liminf_le_liminf_of_le, HasBasis.liminf_eq_ciSup_ciInf, lowerSemicontinuousOn_iff_le_liminf, limsup_const_sub, MeasureTheory.Lp.eLpNorm'_lim_le_liminf_eLpNorm', mem_liminf_iff_eventually_mem, le_liminf_of_le, MeasureTheory.le_measure_liminf_of_limsup_measure_compl_le, bliminf_eq_liminf, liminf_const_add
liminf_reparam πŸ“–CompOp
2 mathmath: HasBasis.liminf_eq_ite, HasBasis.liminf_eq_ciSup_ciInf
limsInf πŸ“–CompOp
17 mathmath: limsInf_le_limsSup, NNReal.limsInf_of_not_isCobounded, limsInf_le_limsInf_of_le, SummationFilter.support_eq_limsInf, limsInf_eq_of_le_nhds, HasBasis.limsInf_eq_iSup_sInf, le_limsInf_of_le, limsInf_le_limsInf, limsInf_top, limsInf_le_of_le, Real.limsInf_of_not_isBounded, Real.limsInf_of_not_isCobounded, limsInf_bot, limsInf_nhds, limsInf_principal_eq_sInf, limsInf_eq_iSup_sInf, limsInf_principal_eq_csSup
limsSup πŸ“–CompOp
16 mathmath: limsInf_le_limsSup, le_limsSup_of_le, Real.limsSup_of_not_isCobounded, limsSup_le_limsSup, limsSup_eq_of_le_nhds, limsSup_eq_iInf_sSup, limsSup_principal_eq_csSup, limsSup_bot, NNReal.limsSup_of_not_isBounded, limsSup_le_of_le, limsSup_principal_eq_sSup, HasBasis.limsSup_eq_iInf_sSup, Real.limsSup_of_not_isBounded, limsSup_le_limsSup_of_le, limsSup_top, limsSup_nhds
limsup πŸ“–CompOp
152 mathmath: Measurable.limsup, Tendsto.limsup_eq, liminf_const_sub, limsup_comp, limsup_nat_add, ProbabilityTheory.measure_limsup_eq_one, sdiff_limsup, ENNReal.ofNNReal_limsup, le_limsup_of_frequently_le, limsup_const, CompleteLatticeHom.apply_limsup_iterate, ENNReal.limsup_const_mul_of_ne_top, ProbabilityTheory.Kernel.indep_iSup_directed_limsup, Real.limsup_of_not_isBoundedUnder, ProbabilityTheory.indep_limsup_atTop_self, le_limsup_add, OrderIso.limsup_apply, ENNReal.limsup_mul_le, blimsup_eq_limsup, ENNReal.limsup_const_mul, ENNReal.limsup_liminf_le_liminf_limsup, limsup_compl, blimsup_true, ProbabilityTheory.Kernel.indep_limsup_atBot_self, limsup_top_eq_ciSup, MeasureTheory.limsup_lintegral_le, HasBasis.limsup_eq_sInf_univ_of_empty, inf_limsup, ProbabilityTheory.indep_biSup_limsup, HasBasis.limsup_eq_ite, ProbabilityTheory.Kernel.indep_iSup_limsup, HasBasis.limsup_eq_sInf_iUnion_iInter, cofinite.limsup_set_eq, le_limsup_of_frequently_le', ProbabilityTheory.condIndep_limsup_atTop_self, EReal.limsup_neg, ProbabilityTheory.Kernel.indep_limsup_self, ENNReal.ofReal_limsup, limsup_const_add, limsup_eq_bot, MeasureTheory.limsup_measure_closed_le_of_forall_tendsto_measure, limsup_sup_filter, liminf_add_le, MeasureTheory.limsup_measure_closed_le_iff_liminf_measure_open_ge, le_limsup_iff, upperSemicontinuousWithinAt_iff_limsup_le, UpperSemicontinuousWithinAt.limsup_le, limsup_sdiff, MeasureTheory.limsup_measure_compl_le_of_le_liminf_measure, upperSemicontinuousOn_iff_limsup_le, MeasureTheory.measure_limsup_cofinite_eq_zero, ENNReal.liminf_mul_le, FormalMultilinearSeries.radius_inv_eq_limsup, blimsup_sup_not, EReal.liminf_add_le, ProbabilityTheory.indep_iSup_limsup, limsup_le_iff, Measurable.limsup', ENNReal.liminf_const_sub, MeasureTheory.FiniteMeasure.limsup_measure_closed_le_of_tendsto, le_limsup_of_le, limsup_le_of_le, le_limsup_mul, Real.limsup_of_not_isCoboundedUnder, le_limsup_iff', MeasureTheory.limsup_trim, UpperSemicontinuousOn.limsup_le, ProbabilityTheory.condIndep_iSup_limsup, Set.limsup_eq_tendsto_sum_indicator_atTop, sup_limsup, liminf_compl, Antitone.map_liminf_of_continuousAt, limsup_le_iff', ProbabilityTheory.indep_iSup_directed_limsup, ENNReal.tsum_eq_limsup_sum_nat, UpperSemicontinuousAt.limsup_le, EReal.le_limsup_mul, ENNReal.toReal_limsup, EReal.limsup_mul_le, spectrum.limsup_pow_nnnorm_pow_one_div_le_spectralRadius, ProbabilityTheory.condIndep_biSup_limsup, upperSemicontinuousAt_iff_limsup_le, ProbabilityTheory.condIndep_limsup_self, eventually_le_limsup, limsup_bot, upperSemicontinuous_iff_limsup_le, ProbabilityTheory.Kernel.indep_biSup_limsup, ProbabilityTheory.indep_limsup_atBot_self, EReal.liminf_neg, Monotone.map_limsSup_of_continuousAt, ENNReal.limsup_eq_zero_iff, EReal.liminf_mul_le, liminf_le_limsup_of_frequently_le, blimsup_eq_limsup_subtype, liminf_mul_le, ENNReal.limsup_add_of_right_tendsto_zero, ProbabilityTheory.condIndep_iSup_directed_limsup, liminf_le_limsup, ProbabilityTheory.Kernel.indep_limsup_atTop_self, MeasurableSet.measurableSet_limsup, limsup_max, ENNReal.limsup_mul_le', MeasureTheory.ae_mem_limsup_atTop_iff, GaloisConnection.l_limsup_le, mem_limsup_iff_frequently_mem, limsup_add_le, MeasureTheory.measure_limsup_atTop_eq_zero, NNReal.limsup_of_not_isBoundedUnder, limsup_eq_iInf_iSup, limsup_le_iSup, limsup_const_bot, EReal.le_limsup_add, limsup_le_limsup, MeasureTheory.limsup_ae_eq_of_forall_ae_eq, limsup_eq_iInf_iSup_of_nat', sdiff_liminf, limsup_finset_sup, NNReal.toReal_limsup, limsup_piecewise, blimsup_not_sup, limsup_congr, ProbabilityTheory.condIndep_limsup_atBot_self, limsup_eq_sInf_sSup, MeasureTheory.limsup_measure_le_of_le_liminf_measure_compl, limsup_eq_iInf_iSup_of_nat, bsupr_limsup_dimH, ENNReal.limsup_const_sub, limsup_eq, ENNReal.le_limsup_mul, ENNReal.limsup_add_le, ENNReal.limsup_sub_const, ENNReal.inv_liminf, limsup_finset_sup', ENNReal.eventually_le_limsup, ENNReal.inv_limsup, HasBasis.limsup_eq_iInf_iSup, ENNReal.limsup_toReal_eq, HasBasis.limsup_eq_ciInf_ciSup, limsup_sub_const, ENNReal.limsup_add_of_left_tendsto_zero, limsup_le_limsup_of_le, limsup_mul_le, MeasureTheory.ProbabilityMeasure.limsup_measure_closed_le_of_tendsto, limsup_const_sub, MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eq, limsup_add_const, iSup_limsup_dimH, UpperSemicontinuous.limsup_le, ProbabilityTheory.indep_limsup_self, EReal.limsup_add_le, Antitone.map_limsInf_of_continuousAt, limsup_top_eq_iSup
limsup_reparam πŸ“–CompOp
2 mathmath: HasBasis.limsup_eq_ite, HasBasis.limsup_eq_ciInf_ciSup

Theorems

NameKindAssumesProvesValidatesDepends On
bliminf_antitone πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
bliminf
β€”sSup_le_sSup
Eventually.mono
bliminf_antitone_filter πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
bliminf
β€”sSup_le_sSup
Eventually.filter_mono
bliminf_congr πŸ“–mathematicalEventuallybliminfβ€”blimsup_congr
bliminf_congr' πŸ“–mathematicalEventuallybliminf
CompleteLattice.toConditionallyCompleteLattice
β€”blimsup_congr'
bliminf_eq πŸ“–mathematicalβ€”bliminf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
setOf
Eventually
β€”β€”
bliminf_eq_iSup_biInf πŸ“–mathematicalβ€”bliminf
CompleteLattice.toConditionallyCompleteLattice
iSup
Set
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Filter
instMembership
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.instMembership
β€”blimsup_eq_iInf_biSup
bliminf_eq_iSup_biInf_of_nat πŸ“–mathematicalβ€”bliminf
CompleteLattice.toConditionallyCompleteLattice
atTop
Nat.instPreorder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”blimsup_eq_iInf_biSup_of_nat
bliminf_eq_liminf πŸ“–mathematicalβ€”bliminf
liminf
Filter
instInf
principal
setOf
β€”blimsup_eq_limsup
bliminf_eq_liminf_subtype πŸ“–mathematicalβ€”bliminf
liminf
Set
Set.instMembership
setOf
comap
β€”blimsup_eq_limsup_subtype
bliminf_false πŸ“–mathematicalβ€”bliminf
CompleteLattice.toConditionallyCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”instIsEmptyFalse
sSup_univ
bliminf_inf_not πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
bliminf
liminf
β€”blimsup_sup_not
bliminf_not_inf πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
bliminf
liminf
β€”blimsup_not_sup
bliminf_or_eq_inf πŸ“–mathematicalβ€”bliminf
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
β€”blimsup_or_eq_sup
bliminf_or_le_inf πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
bliminf
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
β€”blimsup_sup_le_or
bliminf_or_le_inf_aux_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
bliminf
β€”LE.le.trans
bliminf_or_le_inf
inf_le_left
bliminf_or_le_inf_aux_right πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
bliminf
β€”LE.le.trans
bliminf_or_le_inf
inf_le_right
bliminf_sup_le_and πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
bliminf
β€”blimsup_and_le_inf
bliminf_sup_le_and_aux_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
bliminf
β€”LE.le.trans
le_sup_left
bliminf_sup_le_and
bliminf_sup_le_and_aux_right πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
bliminf
β€”LE.le.trans
le_sup_right
bliminf_sup_le_and
bliminf_sup_le_inf_aux_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
blimsup
β€”LE.le.trans
blimsup_and_le_inf
inf_le_left
bliminf_sup_le_inf_aux_right πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
blimsup
β€”LE.le.trans
blimsup_and_le_inf
inf_le_right
bliminf_sup_le_or_aux_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
blimsup
β€”LE.le.trans
le_sup_left
blimsup_sup_le_or
bliminf_sup_le_or_aux_right πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
blimsup
β€”LE.le.trans
le_sup_right
blimsup_sup_le_or
bliminf_true πŸ“–mathematicalβ€”bliminf
liminf
β€”β€”
blimsup_and_le_inf πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
blimsup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
β€”le_inf
blimsup_mono
blimsup_congr πŸ“–mathematicalEventuallyblimsupβ€”blimsup_eq_limsup
limsup_congr
eventually_inf_principal
blimsup_congr' πŸ“–mathematicalEventuallyblimsup
CompleteLattice.toConditionallyCompleteLattice
β€”eventually_congr
Eventually.mono
eq_or_ne
blimsup_eq πŸ“–mathematicalβ€”blimsup
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
setOf
Eventually
β€”β€”
blimsup_eq_iInf_biSup πŸ“–mathematicalβ€”blimsup
CompleteLattice.toConditionallyCompleteLattice
iInf
Set
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Filter
instMembership
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
Set.instMembership
β€”HasBasis.blimsup_eq_iInf_iSup
basis_sets
iInf_congr_Prop
iSup_and'
iSup_congr_Prop
blimsup_eq_iInf_biSup_of_nat πŸ“–mathematicalβ€”blimsup
CompleteLattice.toConditionallyCompleteLattice
atTop
Nat.instPreorder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
β€”HasBasis.blimsup_eq_iInf_iSup
atTop_basis
SemilatticeSup.instIsDirectedOrder
iInf_congr_Prop
iSup_congr_Prop
iInf_true
iSup_and
blimsup_eq_limsup πŸ“–mathematicalβ€”blimsup
limsup
Filter
instInf
principal
setOf
β€”β€”
blimsup_eq_limsup_subtype πŸ“–mathematicalβ€”blimsup
limsup
Set
Set.instMembership
setOf
comap
β€”blimsup_eq_limsup
limsup.eq_1
map_map
map_comap_setCoe_val
blimsup_false πŸ“–mathematicalβ€”blimsup
CompleteLattice.toConditionallyCompleteLattice
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”instIsEmptyFalse
sInf_univ
blimsup_mono πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
blimsup
β€”sInf_le_sInf
Eventually.mono
blimsup_monotone_filter πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
blimsup
β€”sInf_le_sInf
Eventually.filter_mono
blimsup_not_sup πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
blimsup
limsup
β€”blimsup_sup_not
blimsup_or_eq_sup πŸ“–mathematicalβ€”blimsup
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
β€”blimsup_eq_limsup
sup_principal
blimsup_sup_le_or πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
blimsup
β€”sup_le
blimsup_mono
blimsup_sup_not πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
blimsup
limsup
β€”blimsup_true
blimsup_true πŸ“–mathematicalβ€”blimsup
limsup
β€”β€”
eventually_add_neg_lt_of_le_liminf πŸ“–mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
atTop
liminf
Preorder.toLT
AddZero.toZero
AddZeroClass.toAddZero
Eventually
AddZero.toAdd
β€”eventually_lt_of_lt_liminf
lt_of_lt_of_le
add_lt_of_neg_right
eventually_lt_add_pos_of_limsup_le πŸ“–mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
atTop
limsup
Preorder.toLT
AddZero.toZero
AddZeroClass.toAddZero
Eventually
AddZero.toAdd
β€”eventually_lt_of_limsup_lt
lt_of_le_of_lt
lt_add_of_pos_right
eventually_lt_of_limsup_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
limsup
IsBoundedUnder
Preorder.toLE
Eventuallyβ€”eventually_lt_of_lt_liminf
eventually_lt_of_lt_liminf πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
liminf
IsBoundedUnder
Preorder.toLE
Eventuallyβ€”exists_lt_of_lt_csSup
Eventually.mono
lt_of_lt_of_le
exists_forall_mem_of_hasBasis_mem_blimsup πŸ“–mathematicalHasBasis
Set
Set.instMembership
blimsup
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
setOfβ€”HasBasis.mem_of_mem
iInf_congr_Prop
blimsup_eq_iInf_biSup
exists_forall_mem_of_hasBasis_mem_blimsup' πŸ“–β€”HasBasis
Set
Set.instMembership
blimsup
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
β€”β€”exists_forall_mem_of_hasBasis_mem_blimsup
exists_lt_of_le_liminf πŸ“–mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
atTop
Nat.instPreorder
liminf
Preorder.toLT
AddZero.toZero
AddZeroClass.toAddZero
AddZero.toAdd
PNat.val
β€”eventually_add_neg_lt_of_le_liminf
SemilatticeSup.instIsDirectedOrder
exists_lt_of_limsup_le πŸ“–mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
atTop
Nat.instPreorder
limsup
Preorder.toLT
AddZero.toZero
AddZeroClass.toAddZero
PNat.val
AddZero.toAdd
β€”eventually_lt_add_pos_of_limsup_le
SemilatticeSup.instIsDirectedOrder
frequently_lt_of_liminf_lt πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Preorder.toLT
liminf
Frequentlyβ€”frequently_lt_of_lt_limsup
frequently_lt_of_limsInf_lt πŸ“–mathematicalIsCobounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Preorder.toLT
limsInf
Frequentlyβ€”frequently_lt_of_lt_limsSup
frequently_lt_of_lt_limsSup πŸ“–mathematicalIsCobounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Preorder.toLT
limsSup
Frequentlyβ€”Mathlib.Tactic.Contrapose.contrapose₁
limsSup_le_of_le
frequently_lt_of_lt_limsup πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Preorder.toLT
limsup
Frequentlyβ€”Mathlib.Tactic.Contrapose.contrapose₁
limsSup_le_of_le
gt_mem_sets_of_limsInf_gt πŸ“–mathematicalIsBounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Preorder.toLT
limsInf
Eventuallyβ€”lt_mem_sets_of_limsSup_lt
iInf_le_liminf πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
liminf
β€”le_liminf_of_le
isCobounded_ge_of_top
Eventually.of_forall
iInf_le
inf_liminf πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
liminf
β€”sup_limsup
inf_limsup πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
limsup
β€”sup_liminf
le_liminf_iff πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
IsBoundedUnder
liminf
Eventually
Preorder.toLT
β€”limsup_le_iff
le_liminf_iff' πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
IsBoundedUnder
liminf
Eventually
β€”limsup_le_iff'
OrderDual.denselyOrdered
le_liminf_of_le πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Eventually
liminfβ€”le_csSup
le_limsInf_of_le πŸ“–mathematicalIsCobounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Eventually
limsInfβ€”le_csSup
le_limsSup_of_le πŸ“–mathematicalIsBounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
limsSupβ€”le_csInf
le_limsup_iff πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
IsBoundedUnder
limsup
Frequently
Preorder.toLT
β€”frequently_lt_of_lt_limsup
LT.lt.trans_le
forall_lt_iff_le
le_limsup_of_frequently_le
Frequently.mono
le_of_lt
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_or_eq
not_le_of_gt
le_limsup_iff' πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
IsBoundedUnder
limsup
Frequently
β€”Frequently.mono
frequently_lt_of_lt_limsup
LT.lt.trans_le
le_of_lt
forall_lt_iff_le
exists_between
le_limsup_of_frequently_le
le_limsup_of_frequently_le πŸ“–mathematicalFrequently
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
IsBoundedUnder
limsupβ€”le_limsup_of_le
Frequently.exists
Frequently.and_eventually
LE.le.trans
le_limsup_of_frequently_le' πŸ“–mathematicalFrequently
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
limsupβ€”liminf_le_of_frequently_le'
le_limsup_of_le πŸ“–mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
limsupβ€”le_csInf
liminf_bot πŸ“–mathematicalβ€”liminf
CompleteLattice.toConditionallyCompleteLattice
Bot.bot
Filter
instBot
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”map_bot
limsInf_bot
liminf_comp πŸ“–mathematicalβ€”liminf
map
β€”β€”
liminf_compl πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
CompleteBooleanAlgebra.toBooleanAlgebra
liminf
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
limsup
β€”liminf_eq_iSup_iInf
compl_iSup
iInf_congr_Prop
compl_iInf
limsup_eq_iInf_iSup
iSup_congr_Prop
liminf_congr πŸ“–mathematicalEventuallyliminfβ€”limsup_congr
liminf_const πŸ“–mathematicalβ€”liminfβ€”limsup_const
liminf_const_top πŸ“–mathematicalβ€”liminf
CompleteLattice.toConditionallyCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”limsup_const_bot
liminf_eq πŸ“–mathematicalβ€”liminf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
setOf
Eventually
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
β€”β€”
liminf_eq_iSup_iInf πŸ“–mathematicalβ€”liminf
CompleteLattice.toConditionallyCompleteLattice
iSup
Set
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Filter
instMembership
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.instMembership
β€”limsup_eq_iInf_iSup
liminf_eq_iSup_iInf_of_nat πŸ“–mathematicalβ€”liminf
CompleteLattice.toConditionallyCompleteLattice
atTop
Nat.instPreorder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”limsup_eq_iInf_iSup_of_nat
liminf_eq_iSup_iInf_of_nat' πŸ“–mathematicalβ€”liminf
CompleteLattice.toConditionallyCompleteLattice
atTop
Nat.instPreorder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”limsup_eq_iInf_iSup_of_nat'
liminf_eq_sSup_sInf πŸ“–mathematicalβ€”liminf
CompleteLattice.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
Set
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
sets
β€”limsup_eq_sInf_sSup
liminf_le_iff πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
IsBoundedUnder
liminf
Frequently
Preorder.toLT
β€”le_limsup_iff
liminf_le_iff' πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
IsBoundedUnder
liminf
Frequently
β€”le_limsup_iff'
OrderDual.denselyOrdered
liminf_le_liminf πŸ“–mathematicalEventually
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
IsBoundedUnder
IsCoboundedUnder
liminfβ€”limsup_le_limsup
liminf_le_liminf_of_le πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IsBoundedUnder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
IsCoboundedUnder
liminfβ€”limsInf_le_limsInf_of_le
map_mono
liminf_le_limsup πŸ“–mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
liminf
limsup
β€”limsInf_le_limsSup
map_neBot
liminf_le_limsup_of_frequently_le πŸ“–mathematicalFrequently
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
IsBoundedUnder
liminf
limsup
β€”eq_or_neBot
frequently_bot
IsBoundedUnder.eventually_le
IsCoboundedUnder.of_frequently_le
Frequently.mono
Frequently.and_eventually
LE.le.trans
IsBoundedUnder.eventually_ge
IsCoboundedUnder.of_frequently_ge
Eventually.and_frequently
le_limsup_iff
le_liminf_iff
le_refl
LT.lt.trans_le
liminf_le_of_frequently_le πŸ“–mathematicalFrequently
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
IsBoundedUnder
liminfβ€”liminf_le_of_le
Frequently.exists
Frequently.and_eventually
LE.le.trans
liminf_le_of_frequently_le' πŸ“–mathematicalFrequently
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
liminfβ€”liminf_eq
sSup_le
Mathlib.Tactic.Contrapose.contrapose₁
Eventually.mp
Eventually.mono
LE.le.trans
Frequently.exists
liminf_le_of_le πŸ“–mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
liminfβ€”csSup_le
liminf_nat_add πŸ“–mathematicalβ€”liminf
atTop
Nat.instPreorder
β€”liminf.eq_1
map_map
map_add_atTop_eq_nat
liminf_piecewise πŸ“–mathematicalβ€”liminf
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
Set.piecewise
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
bliminf
Set
Set.instMembership
β€”limsup_piecewise
liminf_sdiff πŸ“–mathematicalβ€”BooleanAlgebra.toSDiff
CompleteBooleanAlgebra.toBooleanAlgebra
liminf
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
β€”sdiff_eq
inf_comm
inf_liminf
liminf_sup_filter πŸ“–mathematicalβ€”liminf
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
Filter
instSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
β€”limsup_sup_filter
liminf_top_eq_ciInf πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
liminf
Top.top
Filter
instTop
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”liminf.eq_1
map_top
limsInf_principal_eq_csSup
Set.range_nonempty
sInf_range
liminf_top_eq_iInf πŸ“–mathematicalβ€”liminf
CompleteLattice.toConditionallyCompleteLattice
Top.top
Filter
instTop
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
β€”liminf.eq_1
map_top
limsInf_principal_eq_sInf
sInf_range
limsInf_bot πŸ“–mathematicalβ€”limsInf
CompleteLattice.toConditionallyCompleteLattice
Bot.bot
Filter
instBot
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”top_unique
le_sSup
limsInf_eq_iSup_sInf πŸ“–mathematicalβ€”limsInf
CompleteLattice.toConditionallyCompleteLattice
iSup
Set
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Filter
instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”limsSup_eq_iInf_sSup
limsInf_le_limsInf πŸ“–mathematicalIsBounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
IsCobounded
Eventually
limsInfβ€”csSup_le_csSup
limsInf_le_limsInf_of_le πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IsBounded
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
IsCobounded
limsInfβ€”limsInf_le_limsInf
limsInf_le_limsSup πŸ“–mathematicalIsBounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
limsInf
limsSup
β€”liminf_le_of_le
le_limsup_of_le
Eventually.exists
Eventually.and
le_trans
limsInf_le_of_le πŸ“–mathematicalIsBounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
limsInfβ€”csSup_le
limsInf_principal_eq_csSup πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.Nonempty
limsInf
principal
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”limsSup_principal_eq_csSup
limsInf_principal_eq_sInf πŸ“–mathematicalβ€”limsInf
CompleteLattice.toConditionallyCompleteLattice
principal
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
β€”sSup_lowerBounds_eq_sInf
limsInf_top πŸ“–mathematicalβ€”limsInf
CompleteLattice.toConditionallyCompleteLattice
Top.top
Filter
instTop
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”bot_unique
sSup_le
limsSup_bot πŸ“–mathematicalβ€”limsSup
CompleteLattice.toConditionallyCompleteLattice
Bot.bot
Filter
instBot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”bot_unique
sInf_le
limsSup_eq_iInf_sSup πŸ“–mathematicalβ€”limsSup
CompleteLattice.toConditionallyCompleteLattice
iInf
Set
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Filter
instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
β€”HasBasis.limsSup_eq_iInf_sSup
basis_sets
limsSup_le_limsSup πŸ“–mathematicalIsCobounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
IsBounded
Eventually
limsSupβ€”csInf_le_csInf
limsSup_le_limsSup_of_le πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IsCobounded
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
IsBounded
limsSupβ€”limsSup_le_limsSup
limsSup_le_of_le πŸ“–mathematicalIsCobounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Eventually
limsSupβ€”csInf_le
limsSup_principal_eq_csSup πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.Nonempty
limsSup
principal
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”csInf_upperBounds_eq_csSup
limsSup_principal_eq_sSup πŸ“–mathematicalβ€”limsSup
CompleteLattice.toConditionallyCompleteLattice
principal
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
β€”sInf_upperBounds_eq_sSup
limsSup_top πŸ“–mathematicalβ€”limsSup
CompleteLattice.toConditionallyCompleteLattice
Top.top
Filter
instTop
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”top_unique
le_sInf
limsup_bot πŸ“–mathematicalβ€”limsup
CompleteLattice.toConditionallyCompleteLattice
Bot.bot
Filter
instBot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”map_bot
limsSup_bot
limsup_comp πŸ“–mathematicalβ€”limsup
map
β€”β€”
limsup_compl πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
CompleteBooleanAlgebra.toBooleanAlgebra
limsup
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
liminf
β€”limsup_eq_iInf_iSup
compl_iInf
iSup_congr_Prop
compl_iSup
liminf_eq_iSup_iInf
iInf_congr_Prop
limsup_congr πŸ“–mathematicalEventuallylimsupβ€”limsup_eq
eventually_congr
Eventually.mono
limsup_const πŸ“–mathematicalβ€”limsupβ€”csInf_Ici
limsup_const_bot πŸ“–mathematicalβ€”limsup
CompleteLattice.toConditionallyCompleteLattice
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”limsup_eq
eq_bot_iff
sInf_le
Eventually.of_forall
le_rfl
limsup_eq πŸ“–mathematicalβ€”limsup
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
setOf
Eventually
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
β€”β€”
limsup_eq_iInf_iSup πŸ“–mathematicalβ€”limsup
CompleteLattice.toConditionallyCompleteLattice
iInf
Set
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Filter
instMembership
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
Set.instMembership
β€”HasBasis.limsSup_eq_iInf_sSup
HasBasis.map
basis_sets
iInf_congr_Prop
sSup_image
limsup_eq_iInf_iSup_of_nat πŸ“–mathematicalβ€”limsup
CompleteLattice.toConditionallyCompleteLattice
atTop
Nat.instPreorder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
β€”HasBasis.limsSup_eq_iInf_sSup
HasBasis.map
atTop_basis
SemilatticeSup.instIsDirectedOrder
iInf_congr_Prop
sSup_image
iInf_const
limsup_eq_iInf_iSup_of_nat' πŸ“–mathematicalβ€”limsup
CompleteLattice.toConditionallyCompleteLattice
atTop
Nat.instPreorder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
β€”limsup_eq_iInf_iSup_of_nat
iSup_ge_eq_iSup_nat_add
limsup_eq_sInf_sSup πŸ“–mathematicalβ€”limsup
CompleteLattice.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
Set
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
sets
β€”le_antisymm
limsup_eq
sInf_le_sInf
Set.mem_image
mp_mem
univ_mem'
le_sSup
Set.mem_image_of_mem
le_sInf
sInf_le_of_le
sSup_le
limsup_le_iSup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
limsup
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”limsup_le_of_le
isCobounded_le_of_bot
Eventually.of_forall
le_iSup
limsup_le_iff πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
IsBoundedUnder
limsup
Eventually
Preorder.toLT
β€”eventually_lt_of_limsup_lt
LE.le.trans_lt
forall_gt_iff_le
limsup_le_of_le
Eventually.mono
le_of_lt
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_or_eq
not_le_of_gt
limsup_le_iff' πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
IsBoundedUnder
limsup
Eventually
β€”Eventually.mono
eventually_lt_of_limsup_lt
LE.le.trans_lt
le_of_lt
forall_gt_iff_le
exists_between
limsup_le_of_le
limsup_le_limsup πŸ“–mathematicalEventuallyLE
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
IsCoboundedUnder
IsBoundedUnder
limsupβ€”limsSup_le_limsSup
EventuallyLE.trans
limsup_le_limsup_of_le πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IsCoboundedUnder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
IsBoundedUnder
limsupβ€”limsSup_le_limsSup_of_le
map_mono
limsup_le_of_le πŸ“–mathematicalIsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Eventually
limsupβ€”csInf_le
limsup_nat_add πŸ“–mathematicalβ€”limsup
atTop
Nat.instPreorder
β€”liminf_nat_add
limsup_piecewise πŸ“–mathematicalβ€”limsup
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
Set.piecewise
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
blimsup
Set
Set.instMembership
β€”blimsup_sup_not
blimsup_congr
univ_mem'
Set.piecewise_eq_of_mem
Set.piecewise_eq_of_notMem
limsup_sdiff πŸ“–mathematicalβ€”BooleanAlgebra.toSDiff
CompleteBooleanAlgebra.toBooleanAlgebra
limsup
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
β€”limsup_eq_iInf_iSup
sdiff_eq
biInf_inf
univ_mem
iInf_congr_Prop
inf_comm
inf_iSupβ‚‚_eq
iSup_congr_Prop
limsup_sup_filter πŸ“–mathematicalβ€”limsup
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
Filter
instSup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
β€”le_antisymm
sInf_sup_eq
iInf_congr_Prop
sup_sInf_eq
sInf_le
Eventually.mono
LE.le.trans
le_sup_left
le_sup_right
sup_le
limsup_le_limsup_of_le
isCobounded_le_of_bot
isBounded_le_of_top
limsup_top_eq_ciSup πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
limsup
Top.top
Filter
instTop
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”limsup.eq_1
map_top
limsSup_principal_eq_csSup
Set.range_nonempty
sSup_range
limsup_top_eq_iSup πŸ“–mathematicalβ€”limsup
CompleteLattice.toConditionallyCompleteLattice
Top.top
Filter
instTop
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
β€”limsup.eq_1
map_top
limsSup_principal_eq_sSup
sSup_range
lt_mem_sets_of_limsSup_lt πŸ“–mathematicalIsBounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Preorder.toLT
limsSup
Eventuallyβ€”exists_lt_of_csInf_lt
mem_of_superset
LT.lt.trans_le'
mem_liminf_iff_eventually_mem πŸ“–mathematicalβ€”Set
Set.instMembership
liminf
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Eventually
β€”liminf_eq_iSup_iInf
iSup_congr_Prop
mem_of_superset
mem_limsup_iff_frequently_mem πŸ“–mathematicalβ€”Set
Set.instMembership
limsup
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Frequently
β€”limsup_compl
mono_bliminf πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
bliminfβ€”mono_bliminf'
Eventually.of_forall
mono_bliminf' πŸ“–mathematicalEventuallyPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
bliminf
β€”sSup_le_sSup
Eventually.mono
Eventually.and
LE.le.trans
mono_blimsup πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
blimsupβ€”mono_blimsup'
Eventually.of_forall
mono_blimsup' πŸ“–mathematicalEventuallyPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
blimsup
β€”sInf_le_sInf
Eventually.mono
Eventually.and
LE.le.trans
sdiff_liminf πŸ“–mathematicalβ€”BooleanAlgebra.toSDiff
CompleteBooleanAlgebra.toBooleanAlgebra
liminf
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
limsup
β€”compl_inj_iff
sdiff_eq
compl_inf
compl_compl
sup_liminf
limsup_compl
sdiff_limsup πŸ“–mathematicalβ€”BooleanAlgebra.toSDiff
CompleteBooleanAlgebra.toBooleanAlgebra
limsup
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
liminf
β€”compl_inj_iff
sdiff_eq
compl_inf
compl_compl
sup_limsup
liminf_compl
sup_liminf πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
liminf
β€”liminf_eq_iSup_iInf
sup_comm
biSup_sup
univ_mem
iSup_congr_Prop
iInfβ‚‚_sup_eq
iInf_congr_Prop
sup_limsup πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Coframe.toCompleteLattice
CompleteDistribLattice.toCoframe
limsup
β€”limsup_eq_iInf_iSup
sup_iInfβ‚‚_eq
iInf_congr_Prop
iSup_sup_eq
biSup_const
nonempty_of_mem

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
blimsup_eq_iInf_iSup πŸ“–mathematicalFilter.HasBasisFilter.blimsup
CompleteLattice.toConditionallyCompleteLattice
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
Set
Set.instMembership
β€”Filter.blimsup_eq_limsup
limsup_eq_iInf_iSup
inf_principal
iInf_congr_Prop
iSup_congr_Prop
iSup_and
liminf_eq_ciSup_ciInf πŸ“–mathematicalFilter.HasBasis
Set.Nonempty
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.range
Set.Elem
Set
Set.instMembership
Filter.liminf
iSup
ConditionallyCompletePartialOrderSup.toSupSet
iInf
Filter.liminf_reparam
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”Set.Nonempty.coe_sort
Set.Subset.antisymm
Set.iUnion_subset
Set.subset_iUnion
Set.Iic_ciInf
exists_surjective_nat
Nat.find_spec
liminf_eq_sSup_iUnion_iInter
sSup_iUnion_Iic
liminf_eq_iSup_iInf πŸ“–mathematicalFilter.HasBasisFilter.liminf
CompleteLattice.toConditionallyCompleteLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instMembership
β€”limsup_eq_iInf_iSup
liminf_eq_ite πŸ“–mathematicalFilter.HasBasisFilter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set
Set.instEmptyCollection
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.univ
iSup
iInf
Set.Elem
Filter.liminf_reparam
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.instMembership
β€”liminf_eq_sSup_univ_of_empty
liminf_eq_sSup_iUnion_iInter
Set.iUnion_empty
liminf_eq_ciSup_ciInf
Mathlib.Tactic.Push.not_forall_eq
liminf_eq_sSup_iUnion_iInter πŸ“–mathematicalFilter.HasBasisFilter.liminf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.iUnion
Set.iInter
Set.Elem
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Set
Set.instMembership
β€”eventually_iff
Set.ext
Set.iInter_coe_set
Set.iInter_congr_Prop
liminf_eq_sSup_univ_of_empty πŸ“–mathematicalFilter.HasBasis
Set
Set.instEmptyCollection
Filter.liminf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.univ
β€”eq_bot_iff
limsInf_eq_iSup_sInf πŸ“–mathematicalFilter.HasBasisFilter.limsInf
CompleteLattice.toConditionallyCompleteLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”limsSup_eq_iInf_sSup
limsSup_eq_iInf_sSup πŸ“–mathematicalFilter.HasBasisFilter.limsSup
CompleteLattice.toConditionallyCompleteLattice
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
β€”le_antisymm
le_iInfβ‚‚
sInf_le
eventually_iff
le_sSup
le_sInf
iInfβ‚‚_le_of_le
sSup_le
limsup_eq_ciInf_ciSup πŸ“–mathematicalFilter.HasBasis
Set.Nonempty
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.range
Set.Elem
Set
Set.instMembership
Filter.limsup
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
iSup
Filter.limsup_reparam
ConditionallyCompletePartialOrderSup.toSupSet
β€”liminf_eq_ciSup_ciInf
limsup_eq_iInf_iSup πŸ“–mathematicalFilter.HasBasisFilter.limsup
CompleteLattice.toConditionallyCompleteLattice
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
Set
Set.instMembership
β€”limsSup_eq_iInf_sSup
map
iInf_congr_Prop
sSup_image
limsup_eq_ite πŸ“–mathematicalFilter.HasBasisFilter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set
Set.instEmptyCollection
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.univ
iInf
iSup
Set.Elem
Filter.limsup_reparam
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
Set.instMembership
β€”liminf_eq_ite
limsup_eq_sInf_iUnion_iInter πŸ“–mathematicalFilter.HasBasisFilter.limsup
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.iUnion
Set.iInter
Set.Elem
Set.Ici
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
Set
Set.instMembership
β€”liminf_eq_sSup_iUnion_iInter
limsup_eq_sInf_univ_of_empty πŸ“–mathematicalFilter.HasBasis
Set
Set.instEmptyCollection
Filter.limsup
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.univ
β€”liminf_eq_sSup_univ_of_empty

Filter.cofinite

Theorems

NameKindAssumesProvesValidatesDepends On
bliminf_set_eq πŸ“–mathematicalβ€”Filter.bliminf
Set
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.cofinite
setOf
Set.Finite
Set.instMembership
β€”compl_inj_iff
Filter.bliminf_eq_iSup_biInf
compl_iSup
iInf_congr_Prop
compl_iInf
blimsup_set_eq
blimsup_set_eq πŸ“–mathematicalβ€”Filter.blimsup
Set
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.cofinite
setOf
Set.Infinite
Set.instMembership
β€”Set.ext
Mathlib.Tactic.Contrapose.contrapose₁
Set.Infinite.mono
liminf_set_eq πŸ“–mathematicalβ€”Filter.liminf
Set
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.cofinite
setOf
Set.Finite
Set.instMembership
β€”Filter.bliminf_true
bliminf_set_eq
limsup_set_eq πŸ“–mathematicalβ€”Filter.limsup
Set
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.cofinite
setOf
Set.Infinite
Set.instMembership
β€”Filter.blimsup_true
blimsup_set_eq

GaloisConnection

Theorems

NameKindAssumesProvesValidatesDepends On
l_limsup_le πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Filter.IsBoundedUnder
Preorder.toLE
Filter.IsCoboundedUnder
Filter.limsupβ€”Filter.le_limsSup_of_le
Filter.limsSup_le_of_le
Filter.eventually_map

OrderIso

Theorems

NameKindAssumesProvesValidatesDepends On
apply_bliminf πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instFunLikeOrderIso
Filter.bliminf
β€”apply_blimsup
apply_blimsup πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instFunLikeOrderIso
Filter.blimsup
β€”sInfHomClass.map_sInf
CompleteLatticeHomClass.tosInfHomClass
OrderIsoClass.toCompleteLatticeHomClass
instOrderIsoClass
image_eq_preimage_symm
le_symm_apply
liminf_apply πŸ“–mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Filter.IsCoboundedUnder
DFunLike.coe
OrderIso
instFunLikeOrderIso
Filter.liminfβ€”limsup_apply
limsup_apply πŸ“–mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Filter.IsCoboundedUnder
DFunLike.coe
OrderIso
instFunLikeOrderIso
Filter.limsupβ€”le_antisymm
GaloisConnection.l_limsup_le
to_galoisConnection
symm_apply_apply
symm_symm
monotone

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
liminf_finset_inf πŸ“–mathematicalβ€”Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Finset.inf
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
β€”limsup_finset_sup
liminf_finset_inf' πŸ“–mathematicalFinset.NonemptyFilter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Finset.inf'
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
β€”limsup_finset_sup'
liminf_min πŸ“–mathematicalFilter.IsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsBoundedUnder
Filter.liminf
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
β€”limsup_max
limsup_finset_sup πŸ“–mathematicalβ€”Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Finset.sup
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
β€”Filter.eq_or_neBot
csInf_univ
Finset.sup_bot
Finset.eq_empty_or_nonempty
Finset.sup_empty
Filter.limsup_const
Finset.sup'_eq_sup
limsup_finset_sup'
limsup_finset_sup' πŸ“–mathematicalFinset.NonemptyFilter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Finset.sup'
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
β€”isBoundedUnder_le_finset_sup'
supSet_to_nonempty
le_antisymm
isCoboundedUnder_le_finset_sup'
Filter.limsup_le_iff
Filter.eventually_lt_of_limsup_lt
Finset.sup'_le
Filter.limsup_le_limsup
Filter.Eventually.of_forall
le_refl
limsup_max πŸ“–mathematicalFilter.IsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsBoundedUnder
Filter.limsup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
β€”Filter.IsBoundedUnder.sup
isCoboundedUnder_le_max
le_antisymm
Filter.limsup_le_iff
Filter.eventually_lt_of_limsup_lt
lt_of_le_of_lt
le_max_left
le_max_right
Filter.mem_of_superset
Filter.inter_mem
max_le
Filter.limsup_le_limsup
Filter.Eventually.of_forall

sInfHom

Theorems

NameKindAssumesProvesValidatesDepends On
le_apply_bliminf πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Filter.bliminf
DFunLike.coe
sInfHom
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
instFunLike
β€”sSupHom.apply_blimsup_le

sSupHom

Theorems

NameKindAssumesProvesValidatesDepends On
apply_blimsup_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
DFunLike.coe
sSupHom
ConditionallyCompletePartialOrderSup.toSupSet
instFunLike
Filter.blimsup
β€”Filter.blimsup_eq_iInf_biSup
iInf_congr_Prop
iSup_congr_Prop
LE.le.trans
Monotone.map_iInfβ‚‚_le
OrderHomClass.mono
SupHomClass.toOrderHomClass
SupBotHomClass.toSupHomClass
sSupHomClass.toSupBotHomClass
instSSupHomClass
map_iSup

---

← Back to Index