Documentation Verification Report

Max

πŸ“ Source: Mathlib/Order/Max.lean

Statistics

MetricCount
DefinitionsIsBot, IsMax, IsMin, IsTop, NoBotOrder, NoMaxOrder, NoMinOrder, NoTopOrder
8
Theoremsfst, isMin, isMin_iff, lt_of_ne, lt_of_ne', mono, not_isMax, not_isTop, ofDual, prodMk, snd, toDual, toNoMaxOrder, toNoMinOrder, eq_of_ge, eq_of_le, fst, mono, not_lt, ofDual, prodMk, snd, toDual, eq_of_ge, eq_of_le, fst, mono, not_lt, ofDual, prodMk, snd, toDual, fst, isMax, isMax_iff, lt_of_ne, lt_of_ne', mono, not_isBot, not_isMin, ofDual, prodMk, snd, toDual, not_isMax, not_isMin, exists_not_ge, to_noMinOrder, exists_gt, not_acc, exists_lt, not_acc, exists_not_le, to_noMaxOrder, noBotOrder, noMaxOrder, noMinOrder, noTopOrder, isBot_iff, isMax_iff, isMin_iff, isTop_iff, isBot, isMax, isMin, isTop, instNoBotOrderOfNoMinOrder, instNoMaxOrderForallOfNonempty, instNoMinOrderForallOfNonempty, instNoTopOrderOfNoMaxOrder, isBot_ofDual_iff, isBot_toDual_iff, isMax_iff_forall_not_lt, isMax_ofDual_iff, isMax_toDual_iff, isMin_iff_forall_not_lt, isMin_ofDual_iff, isMin_toDual_iff, isTop_ofDual_iff, isTop_toDual_iff, noBotOrder_iff_noMinOrder, noMaxOrder_of_left, noMaxOrder_of_right, noMinOrder_of_left, noMinOrder_of_right, noTopOrder_iff_noMaxOrder, nonempty_gt, nonempty_lt, not_isBot, not_isMax, not_isMax_iff, not_isMax_of_lt, not_isMin, not_isMin_iff, not_isMin_of_lt, not_isTop
96
Total104

IsBot

Theorems

NameKindAssumesProvesValidatesDepends On
fst πŸ“–β€”IsBot
Prod.instLE_mathlib
Preorder.toLE
β€”β€”β€”
isMin πŸ“–mathematicalIsBotIsMinβ€”β€”
isMin_iff πŸ“–mathematicalIsBot
Preorder.toLE
PartialOrder.toPreorder
IsMinβ€”le_trans
lt_of_ne πŸ“–mathematicalIsBot
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLTβ€”LE.le.lt_of_ne
lt_of_ne' πŸ“–mathematicalIsBot
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLTβ€”LE.le.lt_of_ne'
mono πŸ“–β€”IsBot
Preorder.toLE
β€”β€”LE.le.trans
not_isMax πŸ“–mathematicalIsBot
Preorder.toLE
PartialOrder.toPreorder
IsMaxβ€”exists_ne
IsMax.eq_of_ge
LT.lt.le
lt_of_ne
not_isTop πŸ“–mathematicalIsBot
Preorder.toLE
PartialOrder.toPreorder
IsTopβ€”IsTop.isMax
not_isMax
ofDual πŸ“–mathematicalIsBot
OrderDual
OrderDual.instLE
IsTop
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”isTop_ofDual_iff
prodMk πŸ“–mathematicalIsBot
Preorder.toLE
Prod.instLE_mathlibβ€”β€”
snd πŸ“–β€”IsBot
Prod.instLE_mathlib
Preorder.toLE
β€”β€”β€”
toDual πŸ“–mathematicalIsBotIsTop
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”isTop_toDual_iff

IsEmpty

Theorems

NameKindAssumesProvesValidatesDepends On
toNoMaxOrder πŸ“–mathematicalβ€”NoMaxOrderβ€”β€”
toNoMinOrder πŸ“–mathematicalβ€”NoMinOrderβ€”β€”

IsMax

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_ge πŸ“–β€”IsMax
Preorder.toLE
PartialOrder.toPreorder
β€”β€”LE.le.antisymm'
eq_of_le πŸ“–β€”IsMax
Preorder.toLE
PartialOrder.toPreorder
β€”β€”LE.le.antisymm
fst πŸ“–β€”IsMax
Prod.instLE_mathlib
Preorder.toLE
β€”β€”le_rfl
mono πŸ“–β€”IsMax
Preorder.toLE
β€”β€”LE.le.trans'
not_lt πŸ“–mathematicalIsMax
Preorder.toLE
Preorder.toLTβ€”LT.lt.not_ge
LT.lt.le
ofDual πŸ“–mathematicalIsMax
OrderDual
OrderDual.instLE
IsMin
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”isMin_ofDual_iff
prodMk πŸ“–mathematicalIsMax
Preorder.toLE
Prod.instLE_mathlibβ€”β€”
snd πŸ“–β€”IsMax
Prod.instLE_mathlib
Preorder.toLE
β€”β€”le_rfl
toDual πŸ“–mathematicalIsMaxIsMin
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”isMin_toDual_iff

IsMin

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_ge πŸ“–β€”IsMin
Preorder.toLE
PartialOrder.toPreorder
β€”β€”LE.le.antisymm'
eq_of_le πŸ“–β€”IsMin
Preorder.toLE
PartialOrder.toPreorder
β€”β€”LE.le.antisymm
fst πŸ“–β€”IsMin
Prod.instLE_mathlib
Preorder.toLE
β€”β€”le_rfl
mono πŸ“–β€”IsMin
Preorder.toLE
β€”β€”LE.le.trans
not_lt πŸ“–mathematicalIsMin
Preorder.toLE
Preorder.toLTβ€”LT.lt.not_ge
LT.lt.le
ofDual πŸ“–mathematicalIsMin
OrderDual
OrderDual.instLE
IsMax
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”isMax_ofDual_iff
prodMk πŸ“–mathematicalIsMin
Preorder.toLE
Prod.instLE_mathlibβ€”β€”
snd πŸ“–β€”IsMin
Prod.instLE_mathlib
Preorder.toLE
β€”β€”le_rfl
toDual πŸ“–mathematicalIsMinIsMax
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”isMax_toDual_iff

IsTop

Theorems

NameKindAssumesProvesValidatesDepends On
fst πŸ“–β€”IsTop
Prod.instLE_mathlib
Preorder.toLE
β€”β€”β€”
isMax πŸ“–mathematicalIsTopIsMaxβ€”β€”
isMax_iff πŸ“–mathematicalIsTop
Preorder.toLE
PartialOrder.toPreorder
IsMaxβ€”ge_antisymm_iff
ge_trans
lt_of_ne πŸ“–mathematicalIsTop
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLTβ€”LE.le.lt_of_ne
lt_of_ne' πŸ“–mathematicalIsTop
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLTβ€”LE.le.lt_of_ne'
mono πŸ“–β€”IsTop
Preorder.toLE
β€”β€”LE.le.trans'
not_isBot πŸ“–mathematicalIsTop
Preorder.toLE
PartialOrder.toPreorder
IsBotβ€”IsBot.isMin
not_isMin
not_isMin πŸ“–mathematicalIsTop
Preorder.toLE
PartialOrder.toPreorder
IsMinβ€”exists_ne
IsMin.eq_of_le
LT.lt.le
lt_of_ne'
ofDual πŸ“–mathematicalIsTop
OrderDual
OrderDual.instLE
IsBot
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”isBot_ofDual_iff
prodMk πŸ“–mathematicalIsTop
Preorder.toLE
Prod.instLE_mathlibβ€”β€”
snd πŸ“–β€”IsTop
Prod.instLE_mathlib
Preorder.toLE
β€”β€”β€”
toDual πŸ“–mathematicalIsTopIsBot
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”isBot_toDual_iff

LT.lt

Theorems

NameKindAssumesProvesValidatesDepends On
not_isMax πŸ“–mathematicalPreorder.toLTIsMax
Preorder.toLE
β€”not_isMax_of_lt
not_isMin πŸ“–mathematicalPreorder.toLTIsMin
Preorder.toLE
β€”not_isMin_of_lt

NoBotOrder

Theorems

NameKindAssumesProvesValidatesDepends On
exists_not_ge πŸ“–β€”β€”β€”β€”β€”
to_noMinOrder πŸ“–mathematicalβ€”NoMinOrder
Preorder.toLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”exists_not_ge

NoMaxOrder

Theorems

NameKindAssumesProvesValidatesDepends On
exists_gt πŸ“–β€”β€”β€”β€”β€”
not_acc πŸ“–β€”β€”β€”β€”exists_gt

NoMinOrder

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lt πŸ“–β€”β€”β€”β€”β€”
not_acc πŸ“–β€”β€”β€”β€”exists_lt

NoTopOrder

Theorems

NameKindAssumesProvesValidatesDepends On
exists_not_le πŸ“–β€”β€”β€”β€”β€”
to_noMaxOrder πŸ“–mathematicalβ€”NoMaxOrder
Preorder.toLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”not_le
exists_not_le

OrderDual

Theorems

NameKindAssumesProvesValidatesDepends On
noBotOrder πŸ“–mathematicalβ€”NoBotOrder
OrderDual
instLE
β€”NoTopOrder.exists_not_le
noMaxOrder πŸ“–mathematicalβ€”NoMaxOrder
OrderDual
instLT
β€”NoMinOrder.exists_lt
noMinOrder πŸ“–mathematicalβ€”NoMinOrder
OrderDual
instLT
β€”NoMaxOrder.exists_gt
noTopOrder πŸ“–mathematicalβ€”NoTopOrder
OrderDual
instLE
β€”NoBotOrder.exists_not_ge

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
isBot_iff πŸ“–mathematicalβ€”IsBot
instLE_mathlib
Preorder.toLE
β€”IsBot.fst
IsBot.snd
IsBot.prodMk
isMax_iff πŸ“–mathematicalβ€”IsMax
instLE_mathlib
Preorder.toLE
β€”IsMax.fst
IsMax.snd
IsMax.prodMk
isMin_iff πŸ“–mathematicalβ€”IsMin
instLE_mathlib
Preorder.toLE
β€”IsMin.fst
IsMin.snd
IsMin.prodMk
isTop_iff πŸ“–mathematicalβ€”IsTop
instLE_mathlib
Preorder.toLE
β€”IsTop.fst
IsTop.snd
IsTop.prodMk

Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
isBot πŸ“–mathematicalβ€”IsBot
Preorder.toLE
β€”Eq.le
isMax πŸ“–mathematicalβ€”IsMax
Preorder.toLE
β€”IsTop.isMax
isTop
isMin πŸ“–mathematicalβ€”IsMin
Preorder.toLE
β€”IsBot.isMin
isBot
isTop πŸ“–mathematicalβ€”IsTop
Preorder.toLE
β€”Eq.ge

(root)

Definitions

NameCategoryTheorems
IsBot πŸ“–MathDef
26 mathmath: isBot_ofDual_iff, isTop_toDual_iff, isBot_iff_eq_bot, IsMin.isBot, isBot_iff_isMin, Prod.isBot_iff, IsTop.ofDual, disjoint_nhds_atBot_iff, not_isBot, isBot_one, Set.finite_isBot, isBot_toDual_iff, Subsingleton.isBot, nhdsLT_eq_bot_iff, isLUB_empty_iff, isBot_or_exists_lt, isBot_bot, isBot_zero, isLeast_univ_iff, Set.countable_isBot, isTop_ofDual_iff, not_isBot_iff_ne_bot, IsTop.toDual, Set.subsingleton_isBot, LieAlgebra.engel_isBot_of_isMin, IsTop.not_isBot
IsMax πŸ“–MathDef
84 mathmath: isMax_iff_eq_top, Order.isMax_or_mem_range_pred_or_isPredLimit, isMin_toDual_iff, Flag.isMax_coe, IsMax.of_succ_le, exists_covBy_seq_of_wellFoundedLT_wellFoundedGT, infPrime_iff_not_isMax, Order.krullDim_le_one_iff, IsMin.not_isMax, LocalSubring.isMax_iff, isMax_top, isTop_iff_isMax, ValuationSubring.isMax_toLocalSubring, not_isMax, Order.krullDim_nonpos_iff_forall_isMax, Order.IsSuccLimit.isMax, Order.IsPredPrelimit.isMax, PrimeSpectrum.isMax_iff, not_infIrred, maximal_gt_iff, PartENat.not_isMax_natCast, Order.max_of_succ_le, Order.isPredPrelimit_iff, zorn_le, isMax_ofDual_iff, Finset.Ioi_nonempty, WithTop.coe_covBy_top, isMax_of_succ_notMem, Order.succ_eq_iff_isMax, isMax_grade_iff, Order.succ_le_iff_isMax, Order.IsPredPrelimit.isMax_of_noMin, IsTop.isMax_iff, not_isMax_of_lt, Order.isPredPrelimit_iff_of_noMin, IsBot.not_isMax, Order.not_isMax_zero, Finset.Ioi_eq_empty, isMax_toDual_iff, Order.isMax_iterate_succ_of_eq_of_lt, Prod.isMax_iff, Prod.Lex.covBy_iff, not_infPrime, maximal_ge_iff, IsMin.ofDual, CategoryTheory.Functor.WellOrderInductionData.Extension.map_succ, WithTop.coe_wcovBy_top, Order.isMax_iterate_succ_of_eq_of_ne, Order.coheight_eq_zero, infIrred_iff_not_isMax, Order.lt_succ_iff_not_isMax, maximal_true, isMax_iff_forall_not_lt, succ_notMem_iff_isMax, Order.IsSuccPrelimit.isMax, IsTop.isMax, Order.krullDim_le_one_iff_forall_isMax, zorn_le_nonempty_Iciβ‚€, Set.Ioi_eq_empty_iff, Prod.Lex.toLex_covBy_toLex_iff, OrderIso.isMax_apply, not_isMax_iff, Order.not_isPredLimit_iff, HomotopicalAlgebra.RelativeCellComplex.Cells.hj, Finset.nonempty_Ioi, isMin_ofDual_iff, LT.lt.not_isMax, Order.not_isMax_pred, Order.coheight_pos, Set.Ioi_nonempty, IsMin.toDual, not_isMax_bot, SuccOrder.max_of_succ_le, Order.coheight_ne_zero, zorn_le_nonempty, HahnEmbedding.Partial.exists_isMax, IsMin.not_isMax', Subsingleton.isMax, Order.IsPredLimit.not_isMax, Order.not_isSuccPrelimit_iff, not_isMax_iff_ne_top, StrictAnti.isMax_of_apply, maximal_iff_isMax, LinearLocallyFiniteOrder.isMax_of_succFn_le
IsMin πŸ“–MathDef
78 mathmath: not_isMin_iff, OrderIso.isMin_apply, isMin_toDual_iff, not_isMin, PrincipalSeg.isMin_apply_iff, Order.IsSuccPrelimit.isMin, not_supPrime, isMin_of_pred_notMem, Order.height_ne_zero, Order.not_isPredPrelimit_iff, Order.IsSuccPrelimit.isMin_of_noMax, IsBot.isMin, exists_covBy_seq_of_wellFoundedLT_wellFoundedGT, Order.krullDim_le_one_iff, minimal_le_iff, Set.Iio_eq_empty_iff, Order.height_pos, Order.min_of_le_pred, Order.krullDim_nonpos_iff_forall_isMin, Order.IsPredLimit.isMin, Order.isMin_or_mem_range_succ_or_isSuccLimit, Subsingleton.isMin, isMax_ofDual_iff, PrimeSpectrum.isMin_iff, Order.isSuccPrelimit_iff, SupPrime.not_isMin, supPrime_iff_not_isMin, IsMax.toDual, Flag.isMin_coe, isBot_iff_isMin, Order.pred_lt_iff_not_isMin, Finset.Iio_nonempty, supIrred_iff_not_isMin, not_isMin_iff_ne_bot, IsMax.not_isMin', Order.height_eq_zero, IsMin.of_le_pred, isMax_toDual_iff, Order.not_isMin_succ, Prod.Lex.covBy_iff, WithBot.bot_covBy_coe, pred_notMem_iff_isMin, Order.isMin_iterate_pred_of_eq_of_lt, Order.IsSuccLimit.not_isMin, Set.Iio_nonempty, Finset.nonempty_Iio, IsBot.isMin_iff, PrimeSpectrum.finite_setOf_isMin, not_isMin_of_lt, Order.IsPredPrelimit.isMin, IsTop.not_isMin, LT.lt.not_isMin, Order.not_isSuccLimit_iff, not_isMin_top, Order.pred_eq_iff_isMin, SupIrred.not_isMin, StrictAnti.isMin_of_apply, isMin_iff_eq_bot, Order.isMin_iterate_pred_of_eq_of_ne, minimal_lt_iff, isMin_iff_forall_not_lt, Order.le_pred_iff_isMin, Prod.Lex.toLex_covBy_toLex_iff, not_supIrred, PredOrder.min_of_le_pred, IsMax.not_isMin, minimal_true, Prod.isMin_iff, isMin_ofDual_iff, Order.krullDim_le_one_iff_forall_isMin, isMin_bot, IsMax.ofDual, Order.isSuccPrelimit_iff_of_noMax, WithBot.bot_wcovBy_coe, isMin_grade_iff, minimal_iff_isMin, InitialSeg.isMin_apply_iff, Finset.Iio_eq_empty
IsTop πŸ“–MathDef
24 mathmath: isGLB_empty_iff, isBot_ofDual_iff, IsMax.isTop, isTop_toDual_iff, Subsingleton.isTop, IsBot.toDual, isTop_or_exists_gt, isTop_iff_isMax, Set.subsingleton_isTop, IsBot.ofDual, Prod.isTop_iff, Set.finite_isTop, not_isTop_iff_ne_top, isBot_toDual_iff, IsBot.not_isTop, Set.countable_isTop, not_isTop, isTop_iff_eq_top, nhdsGT_eq_bot_iff, isGreatest_univ_iff, isTop_ofDual_iff, disjoint_nhds_atTop_iff, Set.Ici_eq_singleton_iff_isTop, isTop_top
NoBotOrder πŸ“–CompData
6 mathmath: instNoBotOrderOfNoMinOrder, FirstOrder.Language.realize_noBotOrder_iff, WithTop.noBotOrder, noBotOrder_iff_noMinOrder, OrderDual.noBotOrder, FirstOrder.Language.noBotOrder_of_dlo
NoMaxOrder πŸ“–CompData
36 mathmath: Irrational.instNoMaxOrderSubtypeReal, IsEmpty.toNoMaxOrder, Set.instNoMaxOrderElemIoi, Sum.Lex.noMaxOrder, noTopOrder_iff_noMaxOrder, instNoMaxOrderOfNontrivial, Sum.Lex.noMaxOrder_of_nonempty, PSigma.Lex.noMaxOrder_of_nonempty, Cardinal.noMaxOrder, Nonneg.noMaxOrder, Pi.Colex.noMaxOrder', Field.Emb.Cardinal.noMaxOrder_rank_toType, Cardinal.instNoMaxOrder, Ordinal.toType_noMax_of_succ_lt, Sigma.Lex.noMaxOrder_of_nonempty, Prod.Lex.noMaxOrder_of_left, Nat.instNoMaxOrder, noMaxOrder_of_right, instNoMaxOrderElemIco, IsStrictOrderedRing.toNoMaxOrder, WithBot.noMaxOrder, Sum.noMaxOrder, Nimber.instNoMaxOrder, Ordinal.instNoMaxOrder, Prod.Lex.noMaxOrder_of_right, noMaxOrder_of_left, Sum.noMaxOrder_iff, OrderDual.noMaxOrder, instNoMaxOrderElemIoo, PNat.instNoMaxOrder, LinearOrderedAddCommGroup.to_noMaxOrder, NoTopOrder.to_noMaxOrder, LinearOrderedCommGroup.to_noMaxOrder, Set.instNoMaxOrderElemIci, Pi.Lex.noMaxOrder', instNoMaxOrderElemIio
NoMinOrder πŸ“–CompData
24 mathmath: Sum.noMinOrder, Set.instNoMinOrderElemIic, IsEmpty.toNoMinOrder, Prod.Lex.noMinOrder_of_left, noMinOrder_of_left, PSigma.Lex.noMinOrder_of_nonempty, instNoMinOrderElemIoo, instNoMinOrderOfNontrivial, Set.instNoMinOrderElemIio, Sum.noMinOrder_iff, Prod.Lex.noMinOrder_of_right, NoBotOrder.to_noMinOrder, Irrational.instNoMinOrderSubtypeReal, OrderDual.noMinOrder, instNoMinOrderElemIoi, instNoMinOrderElemIoc, noBotOrder_iff_noMinOrder, LinearOrderedCommGroup.to_noMinOrder, WithTop.noMinOrder, noMinOrder_of_right, Sigma.Lex.noMinOrder_of_nonempty, Sum.Lex.noMinOrder, Sum.Lex.noMinOrder_of_nonempty, LinearOrderedAddCommGroup.to_noMinOrder
NoTopOrder πŸ“–CompData
6 mathmath: WithBot.noTopOrder, noTopOrder_iff_noMaxOrder, FirstOrder.Language.realize_noTopOrder_iff, instNoTopOrderOfNoMaxOrder, OrderDual.noTopOrder, FirstOrder.Language.noTopOrder_of_dlo

Theorems

NameKindAssumesProvesValidatesDepends On
instNoBotOrderOfNoMinOrder πŸ“–mathematicalβ€”NoBotOrder
Preorder.toLE
β€”not_le_of_gt
NoMinOrder.exists_lt
instNoMaxOrderForallOfNonempty πŸ“–mathematicalNoMaxOrder
Preorder.toLT
Pi.preorderβ€”NoMaxOrder.exists_gt
lt_update_self_iff
instNoMinOrderForallOfNonempty πŸ“–mathematicalNoMinOrder
Preorder.toLT
Pi.preorderβ€”NoMinOrder.exists_lt
update_lt_self_iff
instNoTopOrderOfNoMaxOrder πŸ“–mathematicalβ€”NoTopOrder
Preorder.toLE
β€”not_le_of_gt
NoMaxOrder.exists_gt
isBot_ofDual_iff πŸ“–mathematicalβ€”IsBot
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
IsTop
OrderDual.instLE
β€”β€”
isBot_toDual_iff πŸ“–mathematicalβ€”IsBot
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
IsTop
β€”β€”
isMax_iff_forall_not_lt πŸ“–mathematicalβ€”IsMax
Preorder.toLE
Preorder.toLT
β€”IsMax.not_lt
of_not_not
LE.le.lt_of_not_ge
isMax_ofDual_iff πŸ“–mathematicalβ€”IsMax
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
IsMin
OrderDual.instLE
β€”β€”
isMax_toDual_iff πŸ“–mathematicalβ€”IsMax
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
IsMin
β€”β€”
isMin_iff_forall_not_lt πŸ“–mathematicalβ€”IsMin
Preorder.toLE
Preorder.toLT
β€”IsMin.not_lt
of_not_not
LE.le.lt_of_not_ge
isMin_ofDual_iff πŸ“–mathematicalβ€”IsMin
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
IsMax
OrderDual.instLE
β€”β€”
isMin_toDual_iff πŸ“–mathematicalβ€”IsMin
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
IsMax
β€”β€”
isTop_ofDual_iff πŸ“–mathematicalβ€”IsTop
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
IsBot
OrderDual.instLE
β€”β€”
isTop_toDual_iff πŸ“–mathematicalβ€”IsTop
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
IsBot
β€”β€”
noBotOrder_iff_noMinOrder πŸ“–mathematicalβ€”NoBotOrder
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
NoMinOrder
Preorder.toLT
β€”NoBotOrder.to_noMinOrder
instNoBotOrderOfNoMinOrder
noMaxOrder_of_left πŸ“–mathematicalβ€”NoMaxOrder
Preorder.toLT
Prod.instPreorder
β€”NoMaxOrder.exists_gt
Prod.mk_lt_mk_iff_left
noMaxOrder_of_right πŸ“–mathematicalβ€”NoMaxOrder
Preorder.toLT
Prod.instPreorder
β€”NoMaxOrder.exists_gt
Prod.mk_lt_mk_iff_right
noMinOrder_of_left πŸ“–mathematicalβ€”NoMinOrder
Preorder.toLT
Prod.instPreorder
β€”NoMinOrder.exists_lt
Prod.mk_lt_mk_iff_left
noMinOrder_of_right πŸ“–mathematicalβ€”NoMinOrder
Preorder.toLT
Prod.instPreorder
β€”NoMinOrder.exists_lt
Prod.mk_lt_mk_iff_right
noTopOrder_iff_noMaxOrder πŸ“–mathematicalβ€”NoTopOrder
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
NoMaxOrder
Preorder.toLT
β€”NoTopOrder.to_noMaxOrder
instNoTopOrderOfNoMaxOrder
nonempty_gt πŸ“–β€”β€”β€”β€”nonempty_subtype
NoMaxOrder.exists_gt
nonempty_lt πŸ“–β€”β€”β€”β€”nonempty_subtype
NoMinOrder.exists_lt
not_isBot πŸ“–mathematicalβ€”IsBotβ€”NoBotOrder.exists_not_ge
not_isMax πŸ“–mathematicalβ€”IsMax
Preorder.toLE
β€”not_isMax_iff
NoMaxOrder.exists_gt
not_isMax_iff πŸ“–mathematicalβ€”IsMax
Preorder.toLE
Preorder.toLT
β€”lt_iff_le_not_ge
not_isMax_of_lt πŸ“–mathematicalPreorder.toLTIsMax
Preorder.toLE
β€”IsMax.not_lt
not_isMin πŸ“–mathematicalβ€”IsMin
Preorder.toLE
β€”not_isMin_iff
NoMinOrder.exists_lt
not_isMin_iff πŸ“–mathematicalβ€”IsMin
Preorder.toLE
Preorder.toLT
β€”β€”
not_isMin_of_lt πŸ“–mathematicalPreorder.toLTIsMin
Preorder.toLE
β€”IsMin.not_lt
not_isTop πŸ“–mathematicalβ€”IsTopβ€”NoTopOrder.exists_not_le

---

← Back to Index