Documentation Verification Report

Minimal

📁 Source: Mathlib/Order/Minimal.lean

Statistics

MetricCount
DefinitionsMinimal, Minimal, mapSetOfMaximal, mapSetOfMinimal, setOfMaximalIsoSetOfMinimal, setOfMinimalIsoSetOfMaximal
6
Theoremsmaximal, maximal_iff, minimal, minimal_iff, and_left, and_right, dual, eq_of_ge, eq_of_le, eq_of_subset, eq_of_superset, le, mem_of_prop_insert, mono, not_gt, not_prop_of_gt, not_prop_of_ssuperset, not_ssuperset, of_dual, or, anti, le, maximal_of_strictMonoOn, minimalFor_of_strictAntiOn_comp, minimal_of_strictAntiOn, not_gt, not_prop_of_gt, of_strictMonoOn_comp, and_left, and_right, dual, eq_of_ge, eq_of_le, eq_of_subset, eq_of_superset, le, mono, notMem_of_prop_diff_singleton, not_lt, not_prop_of_lt, not_prop_of_ssubset, not_ssubset, of_dual, or, anti, le, maximalFor_of_strictAntiOn_comp, maximal_of_strictAntiOn, minimal_of_strictMonoOn, not_lt, not_prop_of_lt, of_strictMonoOn_comp, image_setOf_maximal, image_setOf_minimal, inter_preimage_setOf_maximal_eq_of_subset, inter_preimage_setOf_minimal_eq_of_subset, maximal_apply_iff, maximal_apply_mem_inter_range_iff, maximal_mem_image, maximal_mem_image_iff, minimal_apply_mem_iff, minimal_apply_mem_inter_range_iff, minimal_mem_image, minimal_mem_image_iff, image_setOf_maximal, image_setOf_minimal, map_maximal_mem, map_minimal_mem, maximal_mem_iff, minimal_mem_iff, exists_diff_singleton_of_not_minimal, exists_insert_of_not_maximal, maximal_iff_forall_insert, maximal_iff_forall_ssuperset, minimal_iff_forall_diff_singleton, minimal_iff_forall_ssubset, exists_gt_of_not_maximal, exists_lt_of_not_minimal, exists_maximalFor_of_wellFoundedGT, exists_maximal_ge_of_wellFoundedGT, exists_maximal_of_wellFoundedGT, exists_minimalFor_of_wellFoundedLT, exists_minimal_le_of_wellFoundedLT, exists_minimal_of_wellFoundedLT, image_antitone_setOf_maximal, image_antitone_setOf_maximal_mem, image_antitone_setOf_minimal, image_antitone_setOf_minimal_mem, image_monotone_setOf_maximal, image_monotone_setOf_maximal_mem, image_monotone_setOf_minimal, image_monotone_setOf_minimal_mem, maximalFor_eq_iff, maximalFor_id, maximalFor_iff_forall_gt, maximal_and_iff_left_of_imp, maximal_and_iff_right_of_imp, maximal_eq_iff, maximal_false, maximal_ge_iff, maximal_gt_iff, maximal_iff, maximal_iff_eq, maximal_iff_forall_gt, maximal_iff_isMax, maximal_iff_maximal_of_imp_of_forall, maximal_le_iff, maximal_maximal, maximal_mem_Icc, maximal_mem_Ioc, maximal_mem_iff, maximal_mem_image_antitone, maximal_mem_image_antitone_iff, maximal_mem_image_monotone, maximal_mem_image_monotone_iff, maximal_subset_iff, maximal_subset_iff', maximal_subtype, maximal_toDual, maximal_true, maximal_true_subtype, minimalFor_eq_iff, minimalFor_id, minimalFor_iff_forall_lt, minimal_and_iff_left_of_imp, minimal_and_iff_right_of_imp, minimal_eq_iff, minimal_false, minimal_ge_iff, minimal_iff, minimal_iff_eq, minimal_iff_forall_lt, minimal_iff_isMin, minimal_iff_minimal_of_imp_of_forall, minimal_le_iff, minimal_lt_iff, minimal_mem_Icc, minimal_mem_Ico, minimal_mem_iff, minimal_mem_image_antitone, minimal_mem_image_antitone_iff, minimal_mem_image_monotone, minimal_mem_image_monotone_iff, minimal_minimal, minimal_subset_iff, minimal_subset_iff', minimal_subtype, minimal_toDual, minimal_true, minimal_true_subtype, not_maximal_iff, not_maximal_iff_exists_gt, not_maximal_subset_iff, not_minimal_iff, not_minimal_iff_exists_lt, not_minimal_subset_iff, setOf_maximal_subset, setOf_minimal_subset
158
Total164

Fermat42

Definitions

NameCategoryTheorems
Minimal 📖MathDef
3 mathmath: exists_pos_odd_minimal, exists_odd_minimal, exists_minimal

IsGreatest

Theorems

NameKindAssumesProvesValidatesDepends On
maximal 📖mathematicalIsGreatest
Preorder.toLE
Maximal
Set
Set.instMembership
maximal_iff 📖mathematicalIsGreatest
Preorder.toLE
PartialOrder.toPreorder
Maximal
Set
Set.instMembership
Maximal.eq_of_le
Maximal.prop
maximal

IsLeast

Theorems

NameKindAssumesProvesValidatesDepends On
minimal 📖mathematicalIsLeast
Preorder.toLE
Minimal
Set
Set.instMembership
minimal_iff 📖mathematicalIsLeast
Preorder.toLE
PartialOrder.toPreorder
Minimal
Set
Set.instMembership
Minimal.eq_of_ge
Minimal.prop
minimal

Maximal

Theorems

NameKindAssumesProvesValidatesDepends On
and_left 📖Maximalmono
prop
and_right 📖Maximalmono
prop
dual 📖mathematicalMinimalMaximal
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
maximal_toDual
eq_of_ge 📖Maximal
Preorder.toLE
PartialOrder.toPreorder
eq_of_le
eq_of_le 📖Maximal
Preorder.toLE
PartialOrder.toPreorder
LE.le.antisymm
eq_of_subset 📖Maximal
Set
Set.instLE
Set.instHasSubset
eq_of_le
eq_of_superset 📖Maximal
Set
Set.instLE
Set.instHasSubset
eq_of_ge
le 📖Maximal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
le_of_not_gt
not_gt
mem_of_prop_insert 📖mathematicalMaximal
Set
Set.instLE
Set.instInsert
Set.instMembershipSet.mem_insert
eq_of_subset
Set.subset_insert
mono 📖Maximal
Pi.hasLe
Prop.le
le_of_ge
not_gt 📖mathematicalMaximal
Preorder.toLE
Preorder.toLTnot_prop_of_gt
not_prop_of_gt 📖Maximal
Preorder.toLE
Preorder.toLT
maximal_iff_forall_gt
not_prop_of_ssuperset 📖Maximal
Set
Set.instLE
Set.instHasSSubset
maximal_iff_forall_gt
not_ssuperset 📖mathematicalMaximal
Set
Set.instLE
Set.instHasSSubsetnot_gt
of_dual 📖mathematicalMaximal
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
Minimalmaximal_toDual
or 📖MaximalMinimal.or

MaximalFor

Theorems

NameKindAssumesProvesValidatesDepends On
anti 📖MaximalFor
Pi.hasLe
Prop.le
le_of_le
le 📖MaximalFor
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
le_of_not_gt
not_gt
maximal_of_strictMonoOn 📖mathematicalStrictMonoOn
setOf
MaximalFor
Preorder.toLE
MaximalmaximalFor_id
of_strictMonoOn_comp
Set.image_id
minimalFor_of_strictAntiOn_comp 📖mathematicalStrictAntiOn
Set.image
setOf
MaximalFor
Preorder.toLE
MinimalForprop
not_gt
lt_of_le_not_ge
minimal_of_strictAntiOn 📖mathematicalStrictAntiOn
setOf
MaximalFor
Preorder.toLE
MinimalminimalFor_id
minimalFor_of_strictAntiOn_comp
Set.image_id
not_gt 📖mathematicalMaximalFor
Preorder.toLE
Preorder.toLTnot_prop_of_gt
not_prop_of_gt 📖MaximalFor
Preorder.toLE
Preorder.toLT
maximalFor_iff_forall_gt
of_strictMonoOn_comp 📖StrictMonoOn
Set.image
setOf
MaximalFor
Preorder.toLE
prop
not_gt
lt_of_le_not_ge

Minimal

Theorems

NameKindAssumesProvesValidatesDepends On
and_left 📖Minimalmono
prop
and_right 📖Minimalmono
prop
dual 📖mathematicalMaximalMinimal
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
minimal_toDual
eq_of_ge 📖Minimal
Preorder.toLE
PartialOrder.toPreorder
LE.le.antisymm
eq_of_le 📖Minimal
Preorder.toLE
PartialOrder.toPreorder
eq_of_ge
eq_of_subset 📖Minimal
Set
Set.instLE
Set.instHasSubset
eq_of_le
eq_of_superset 📖Minimal
Set
Set.instLE
Set.instHasSubset
eq_of_ge
le 📖Minimal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
le_of_not_gt
not_lt
mono 📖Minimal
Pi.hasLe
Prop.le
le_of_le
notMem_of_prop_diff_singleton 📖mathematicalMinimal
Set
Set.instLE
Set.instSDiff
Set.instSingletonSet
Set.instMembershipEq.subset
Set.instReflSubset
eq_of_superset
Set.diff_subset
not_lt 📖mathematicalMinimal
Preorder.toLE
Preorder.toLTnot_prop_of_lt
not_prop_of_lt 📖Minimal
Preorder.toLE
Preorder.toLT
minimal_iff_forall_lt
not_prop_of_ssubset 📖Minimal
Set
Set.instLE
Set.instHasSSubset
minimal_iff_forall_lt
not_ssubset 📖mathematicalMinimal
Set
Set.instLE
Set.instHasSSubsetnot_lt
of_dual 📖mathematicalMinimal
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
Maximalminimal_toDual
or 📖Minimal

MinimalFor

Theorems

NameKindAssumesProvesValidatesDepends On
anti 📖MinimalFor
Pi.hasLe
Prop.le
le_of_le
le 📖MinimalFor
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
le_of_not_gt
not_lt
maximalFor_of_strictAntiOn_comp 📖mathematicalStrictAntiOn
Set.image
setOf
MinimalFor
Preorder.toLE
MaximalForprop
not_lt
lt_of_le_not_ge
maximal_of_strictAntiOn 📖mathematicalStrictAntiOn
setOf
MinimalFor
Preorder.toLE
MaximalmaximalFor_id
maximalFor_of_strictAntiOn_comp
Set.image_id
minimal_of_strictMonoOn 📖mathematicalStrictMonoOn
setOf
MinimalFor
Preorder.toLE
MinimalminimalFor_id
of_strictMonoOn_comp
Set.image_id
not_lt 📖mathematicalMinimalFor
Preorder.toLE
Preorder.toLTnot_prop_of_lt
not_prop_of_lt 📖MinimalFor
Preorder.toLE
Preorder.toLT
minimalFor_iff_forall_lt
of_strictMonoOn_comp 📖StrictMonoOn
Set.image
setOf
MinimalFor
Preorder.toLE
prop
not_lt
lt_of_le_not_ge

OrderEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
image_setOf_maximal 📖mathematicalSet.image
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
setOf
Maximal
Set
Set.instMembership
image_monotone_setOf_maximal
le_iff_le
image_setOf_minimal 📖mathematicalSet.image
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
setOf
Minimal
Set
Set.instMembership
image_monotone_setOf_minimal
le_iff_le
inter_preimage_setOf_maximal_eq_of_subset 📖mathematicalSet
Set.instHasSubset
Set.image
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
Set.instMembership
Set.instInter
Set.preimage
setOf
Maximal
inter_preimage_setOf_minimal_eq_of_subset
inter_preimage_setOf_minimal_eq_of_subset 📖mathematicalSet
Set.instHasSubset
Set.image
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
Set.instMembership
Set.instInter
Set.preimage
setOf
Minimal
minimal_apply_mem_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_subset_range
minimal_and_iff_left_of_imp
Function.Injective.mem_set_image
RelEmbedding.injective
maximal_apply_iff 📖mathematicalSet
Set.instHasSubset
Set.range
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
Maximal
Set.instMembership
minimal_apply_mem_iff
maximal_apply_mem_inter_range_iff 📖mathematicalMaximal
Preorder.toLE
Set
Set.instMembership
Set.instInter
Set.range
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
minimal_apply_mem_inter_range_iff
maximal_mem_image 📖mathematicalMaximal
Preorder.toLE
Set
Set.instMembership
Set.image
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
maximal_mem_image_monotone
le_iff_le
maximal_mem_image_iff 📖mathematicalSet
Set.instMembership
Maximal
Preorder.toLE
Set.image
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
maximal_mem_image_monotone_iff
le_iff_le
minimal_apply_mem_iff 📖mathematicalSet
Set.instHasSubset
Set.range
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
Minimal
Set.instMembership
minimal_apply_mem_inter_range_iff
Set.inter_eq_self_of_subset_left
minimal_apply_mem_inter_range_iff 📖mathematicalMinimal
Preorder.toLE
Set
Set.instMembership
Set.instInter
Set.range
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
Minimal.prop
le_iff_le
Minimal.le_of_le
RelEmbedding.instEmbeddingLike
minimal_mem_image 📖mathematicalMinimal
Preorder.toLE
Set
Set.instMembership
Set.image
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
minimal_mem_image_monotone
le_iff_le
minimal_mem_image_iff 📖mathematicalSet
Set.instMembership
Minimal
Preorder.toLE
Set.image
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
minimal_mem_image_monotone_iff
le_iff_le

OrderIso

Definitions

NameCategoryTheorems
mapSetOfMaximal 📖CompOp
mapSetOfMinimal 📖CompOp
setOfMaximalIsoSetOfMinimal 📖CompOp
setOfMinimalIsoSetOfMaximal 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
image_setOf_maximal 📖mathematicalSet.image
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
setOf
Maximal
symm
apply_symm_apply
symm_apply_apply
image_monotone_setOf_maximal
le_iff_le
image_setOf_minimal 📖mathematicalSet.image
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
setOf
Minimal
symm
apply_symm_apply
symm_apply_apply
image_monotone_setOf_minimal
le_iff_le
map_maximal_mem 📖mathematicalMaximal
Preorder.toLE
Set
Set.instMembership
DFunLike.coe
OrderIso
Set.Elem
instFunLikeOrderIso
Maximal.prop
Maximal.prop
EquivLike.range_comp
Subtype.range_coe_subtype
Set.image_univ
OrderEmbedding.maximal_mem_image
map_minimal_mem 📖mathematicalMinimal
Preorder.toLE
Set
Set.instMembership
DFunLike.coe
OrderIso
Set.Elem
instFunLikeOrderIso
Minimal.prop
Minimal.prop
EquivLike.range_comp
Subtype.range_coe_subtype
Set.image_univ
OrderEmbedding.minimal_mem_image

Set

Theorems

NameKindAssumesProvesValidatesDepends On
exists_diff_singleton_of_not_minimal 📖mathematicalMinimal
Set
instLE
instMembership
instSDiff
instSingletonSet
minimal_iff_forall_diff_singleton
exists_insert_of_not_maximal 📖mathematicalMaximal
Set
instLE
instMembership
instInsert
maximal_iff_forall_insert
maximal_iff_forall_insert 📖mathematicalMaximal
Set
instLE
instInsert
Maximal.mem_of_prop_insert
insert_subset
maximal_iff_forall_ssuperset 📖mathematicalMaximal
Set
instLE
maximal_iff_forall_gt
minimal_iff_forall_diff_singleton 📖mathematicalMinimal
Set
instLE
instSDiff
instSingletonSet
Minimal.notMem_of_prop_diff_singleton
by_contra
subset_diff_singleton
minimal_iff_forall_ssubset 📖mathematicalMinimal
Set
instLE
minimal_iff_forall_lt

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
maximal_mem_iff 📖mathematicalSet.SubsingletonMaximal
Preorder.toLE
Set
Set.instMembership
eq_empty_or_singleton
minimal_mem_iff 📖mathematicalSet.SubsingletonMinimal
Preorder.toLE
Set
Set.instMembership
eq_empty_or_singleton

(root)

Definitions

NameCategoryTheorems
Minimal 📖MathDef
85 mathmath: Set.minimal_iff_forall_ssubset, Maximal.of_dual, Matroid.isCocircuit_iff_minimal_compl_nonspanning, image_monotone_setOf_minimal, minimal_ge_iff, minimalPrimes_eq_minimals, Matroid.IsCircuit.minimal, minimal_iff_minimal_of_imp_of_forall, minimal_mem_image_antitone_iff, not_minimal_iff_exists_lt, maximal_mem_image_antitone_iff, minimal_le_iff, Set.IsPWO.exists_le_minimal, minimal_mem_Ico, MinimalFor.minimal_of_strictMonoOn, IsLeast.minimal_iff, OrderEmbedding.inter_preimage_setOf_minimal_eq_of_subset, minimal_subset_iff', exists_minimal_le_of_wellFoundedLT, SimpleGraph.isTree_iff_minimal_connected, Finset.exists_minimal, IsAntichain.minimal_mem_iff, minimal_minimal, Set.minimal_iff_forall_diff_singleton, not_minimal_iff, Finset.minimal_iff_forall_diff_singleton, minimal_and_iff_left_of_imp, Finset.exists_le_minimal, maximal_mem_image_antitone, IsLeast.minimal, minimal_mem_image_monotone_iff, Set.IsPWO.exists_minimal, Submonoid.exists_minimal_closure_eq_top, minimal_toDual, AddSubmonoid.exists_minimal_closure_eq_top, minimal_iff_isLeast, minimal_false, not_minimal_subset_iff, minimal_iff_eq, OrderIso.image_setOf_minimal, MaximalFor.minimal_of_strictAntiOn, IsAntichain.minimal_mem_upperClosure_iff_mem, maximal_toDual, minimal_mem_iff, minimal_subset_iff, OrderEmbedding.minimal_apply_mem_iff, image_antitone_setOf_maximal_mem, exists_minimal_of_wellFoundedLT, minimalFor_id, minimal_iff, minimal_iff_forall_lt, OrderEmbedding.image_setOf_minimal, Matroid.isCircuit_def, zorn_superset_nonempty, setOf_minimal_subset, image_antitone_setOf_minimal_mem, OrderEmbedding.minimal_mem_image_iff, Set.Finite.exists_minimal, zorn_superset, OrderEmbedding.minimal_apply_mem_inter_range_iff, Matroid.isCocircuit_iff_minimal, minimal_eq_iff, Finite.exists_le_minimal, minimal_lt_iff, image_monotone_setOf_minimal_mem, image_antitone_setOf_minimal, Matroid.isCircuit_iff_minimal_not_indep, AddSubmonoid.FG.exists_minimal_closure_eq, setOf_minimal_antichain, Matroid.isBase_iff_minimal_spanning, Set.Finite.exists_le_minimal, Matroid.isCocircuit_iff_minimal_compl_nonspanning', image_antitone_setOf_maximal, minimal_true, minimal_and_iff_right_of_imp, Matroid.IsCircuit.minimal_not_indep, minimal_subtype, Set.Subsingleton.minimal_mem_iff, minimal_true_subtype, Submonoid.FG.exists_minimal_closure_eq, minimal_mem_Icc, Order.height_eq_coe_iff_minimal_le_height, Minimal.dual, minimal_iff_isMin, DirectedOn.minimal_iff_isLeast

Theorems

NameKindAssumesProvesValidatesDepends On
exists_gt_of_not_maximal 📖mathematicalMaximal
Preorder.toLE
Preorder.toLTnot_maximal_iff_exists_gt
exists_lt_of_not_minimal 📖mathematicalMinimal
Preorder.toLE
Preorder.toLTnot_minimal_iff_exists_lt
exists_maximalFor_of_wellFoundedGT 📖mathematicalMaximalFor
Preorder.toLE
exists_minimalFor_of_wellFoundedLT
instWellFoundedLTOrderDualOfWellFoundedGT
exists_maximal_ge_of_wellFoundedGT 📖mathematicalPreorder.toLE
Maximal
exists_minimal_le_of_wellFoundedLT
instWellFoundedLTOrderDualOfWellFoundedGT
exists_maximal_of_wellFoundedGT 📖mathematicalMaximal
Preorder.toLE
exists_minimal_of_wellFoundedLT
instWellFoundedLTOrderDualOfWellFoundedGT
exists_minimalFor_of_wellFoundedLT 📖mathematicalMinimalFor
Preorder.toLE
WellFounded.has_min
IsWellFounded.wf
instIsWellFoundedInvImage
exists_minimal_le_of_wellFoundedLT 📖mathematicalPreorder.toLE
Minimal
exists_minimal_of_wellFoundedLT
le_rfl
LE.le.trans
exists_minimal_of_wellFoundedLT 📖mathematicalMinimal
Preorder.toLE
exists_minimalFor_of_wellFoundedLT
image_antitone_setOf_maximal 📖mathematicalPreorder.toLESet.image
setOf
Maximal
Minimal
image_monotone_setOf_maximal
image_antitone_setOf_maximal_mem 📖mathematicalPreorder.toLESet.image
setOf
Maximal
Set
Set.instMembership
Minimal
image_antitone_setOf_maximal
image_antitone_setOf_minimal 📖mathematicalPreorder.toLESet.image
setOf
Minimal
Maximal
image_monotone_setOf_minimal
image_antitone_setOf_minimal_mem 📖mathematicalPreorder.toLESet.image
setOf
Minimal
Set
Set.instMembership
Maximal
image_antitone_setOf_minimal
image_monotone_setOf_maximal 📖mathematicalPreorder.toLESet.image
setOf
Maximal
image_monotone_setOf_minimal
image_monotone_setOf_maximal_mem 📖mathematicalPreorder.toLESet.image
setOf
Maximal
Set
Set.instMembership
image_monotone_setOf_maximal
image_monotone_setOf_minimal 📖mathematicalPreorder.toLESet.image
setOf
Minimal
Set.ext
minimal_mem_image_monotone_iff
Minimal.prop
Set.mem_setOf_eq
Set.mem_image_of_mem
image_monotone_setOf_minimal_mem 📖mathematicalPreorder.toLESet.image
setOf
Minimal
Set
Set.instMembership
image_monotone_setOf_minimal
maximalFor_eq_iff 📖mathematicalMaximalFor
maximalFor_id 📖mathematicalMaximalFor
Maximal
maximalFor_iff_forall_gt 📖mathematicalMaximalFor
Preorder.toLE
minimalFor_iff_forall_lt
maximal_and_iff_left_of_imp 📖mathematicalMaximalminimal_and_iff_left_of_imp
maximal_and_iff_right_of_imp 📖mathematicalMaximalminimal_and_iff_right_of_imp
maximal_eq_iff 📖mathematicalMaximal
maximal_false 📖mathematicalMaximalinstIsEmptyFalse
maximal_ge_iff 📖mathematicalMaximal
Preorder.toLE
IsMax
minimal_le_iff
maximal_gt_iff 📖mathematicalMaximal
Preorder.toLE
Preorder.toLT
IsMax
minimal_lt_iff
maximal_iff 📖mathematicalMaximal
Preorder.toLE
PartialOrder.toPreorder
minimal_iff
maximal_iff_eq 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
Maximalminimal_iff_eq
maximal_iff_forall_gt 📖mathematicalMaximal
Preorder.toLE
minimal_iff_forall_lt
maximal_iff_isMax 📖mathematicalMaximal
IsMax
Maximal.prop
Maximal.le_of_ge
maximal_iff_maximal_of_imp_of_forall 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
Maximalminimal_iff_minimal_of_imp_of_forall
maximal_le_iff 📖mathematicalMaximal
Preorder.toLE
PartialOrder.toPreorder
maximal_iff_eq
Eq.le
maximal_maximal 📖mathematicalMaximalminimal_minimal
maximal_mem_Icc 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
Maximal
Set
Set.instMembership
Set.Icc
maximal_iff_eq
Eq.le
maximal_mem_Ioc 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
Maximal
Preorder.toLE
Set
Set.instMembership
Set.Ioc
maximal_iff_eq
Eq.le
maximal_mem_iff 📖mathematicalMaximal
Preorder.toLE
PartialOrder.toPreorder
Set
Set.instMembership
maximal_iff
maximal_mem_image_antitone 📖mathematicalPreorder.toLE
Maximal
Set
Set.instMembership
Minimal
Set.image
maximal_mem_image_monotone
maximal_mem_image_antitone_iff 📖mathematicalSet
Set.instMembership
Preorder.toLE
Maximal
Set.image
Minimal
minimal_mem_image_monotone_iff
maximal_mem_image_monotone 📖mathematicalPreorder.toLE
Maximal
Set
Set.instMembership
Set.imageminimal_mem_image_monotone
maximal_mem_image_monotone_iff 📖mathematicalSet
Set.instMembership
Preorder.toLE
Maximal
Set.image
minimal_mem_image_monotone_iff
maximal_subset_iff 📖mathematicalMaximal
Set
Set.instLE
maximal_iff
maximal_subset_iff' 📖mathematicalMaximal
Set
Set.instLE
Set.instHasSubset
maximal_subtype 📖mathematicalMaximal
Pi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Prop.instBooleanAlgebra
minimal_subtype
maximal_toDual 📖mathematicalMaximal
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
Minimal
maximal_true 📖mathematicalMaximal
IsMax
minimal_true
maximal_true_subtype 📖mathematicalMaximal
minimalFor_eq_iff 📖mathematicalMinimalFor
minimalFor_id 📖mathematicalMinimalFor
Minimal
minimalFor_iff_forall_lt 📖mathematicalMinimalFor
Preorder.toLE
minimal_and_iff_left_of_imp 📖mathematicalMinimalminimal_and_iff_right_of_imp
minimal_and_iff_right_of_imp 📖mathematicalMinimalMinimal.prop
minimal_eq_iff 📖mathematicalMinimal
minimal_false 📖mathematicalMinimalinstIsEmptyFalse
minimal_ge_iff 📖mathematicalMinimal
Preorder.toLE
PartialOrder.toPreorder
minimal_iff_eq
Eq.le
minimal_iff 📖mathematicalMinimal
Preorder.toLE
PartialOrder.toPreorder
Minimal.eq_of_ge
Eq.le
minimal_iff_eq 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
MinimalMinimal.eq_of_ge
Minimal.prop
minimal_iff_forall_lt 📖mathematicalMinimal
Preorder.toLE
minimal_iff_isMin 📖mathematicalMinimal
IsMin
Minimal.prop
Minimal.le_of_le
minimal_iff_minimal_of_imp_of_forall 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
MinimalMinimal.prop
LE.le.antisymm
Minimal.le_of_le
LE.le.trans
minimal_le_iff 📖mathematicalMinimal
Preorder.toLE
IsMin
minimal_iff_isMin
LE.le.trans
minimal_lt_iff 📖mathematicalMinimal
Preorder.toLE
Preorder.toLT
IsMin
minimal_iff_isMin
LE.le.trans_lt
minimal_mem_Icc 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
Minimal
Set
Set.instMembership
Set.Icc
minimal_iff_eq
Eq.le
minimal_mem_Ico 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
Minimal
Preorder.toLE
Set
Set.instMembership
Set.Ico
minimal_iff_eq
Eq.le
minimal_mem_iff 📖mathematicalMinimal
Preorder.toLE
PartialOrder.toPreorder
Set
Set.instMembership
minimal_iff
minimal_mem_image_antitone 📖mathematicalPreorder.toLE
Minimal
Set
Set.instMembership
Maximal
Set.image
minimal_mem_image_monotone
minimal_mem_image_antitone_iff 📖mathematicalSet
Set.instMembership
Preorder.toLE
Minimal
Set.image
Maximal
maximal_mem_image_monotone_iff
minimal_mem_image_monotone 📖mathematicalPreorder.toLE
Minimal
Set
Set.instMembership
Set.imageSet.mem_image_of_mem
Minimal.prop
Minimal.le_of_le
minimal_mem_image_monotone_iff 📖mathematicalSet
Set.instMembership
Preorder.toLE
Minimal
Set.image
Minimal.le_of_le
Set.mem_image_of_mem
minimal_mem_image_monotone
minimal_minimal 📖mathematicalMinimalMinimal.prop
Minimal.le_of_le
minimal_subset_iff 📖mathematicalMinimal
Set
Set.instLE
minimal_iff
minimal_subset_iff' 📖mathematicalMinimal
Set
Set.instLE
Set.instHasSubset
minimal_subtype 📖mathematicalMinimal
Pi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Prop.instBooleanAlgebra
minimal_toDual 📖mathematicalMinimal
OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
Maximal
minimal_true 📖mathematicalMinimal
IsMin
minimal_true_subtype 📖mathematicalMinimal
not_maximal_iff 📖mathematicalMaximalnot_minimal_iff
not_maximal_iff_exists_gt 📖mathematicalMaximal
Preorder.toLE
Preorder.toLT
not_minimal_iff_exists_lt
not_maximal_subset_iff 📖mathematicalMaximal
Set
Set.instLE
Set.instHasSSubset
not_maximal_iff_exists_gt
not_minimal_iff 📖mathematicalMinimal
not_minimal_iff_exists_lt 📖mathematicalMinimal
Preorder.toLE
Preorder.toLT
not_minimal_iff
not_minimal_subset_iff 📖mathematicalMinimal
Set
Set.instLE
Set.instHasSSubset
not_minimal_iff_exists_lt
setOf_maximal_subset 📖mathematicalSet
Set.instHasSubset
setOf
Maximal
Preorder.toLE
Set.instMembership
Set.sep_subset
setOf_minimal_subset 📖mathematicalSet
Set.instHasSubset
setOf
Minimal
Preorder.toLE
Set.instMembership
Set.sep_subset

---

← Back to Index