Documentation Verification Report

ModularLattice

📁 Source: Mathlib/Order/ModularLattice.lean

Statistics

MetricCount
DefinitionsIicOrderIsoIci, IsLowerModularLattice, IsModularLattice, IsUpperModularLattice, IsWeakLowerModularLattice, IsWeakUpperModularLattice, infIccOrderIsoIccSup, infIooOrderIsoIooSup
8
Theoremscodisjoint_inf_left_of_codisjoint_inf_right, codisjoint_inf_right_of_codisjoint_inf_left, exists_isCompl, isCompl_inf_left_of_isCompl_inf_right, isCompl_inf_right_of_isCompl_inf_left, inf_of_sup_left, inf_of_sup_of_sup_left, inf_of_sup_of_sup_right, inf_of_sup_right, sup_of_inf_left, sup_of_inf_of_inf_left, sup_of_inf_of_inf_right, sup_of_inf_right, disjoint_sup_left_of_disjoint_sup_right, disjoint_sup_right_of_disjoint_sup_left, exists_isCompl, isCompl_sup_left_of_isCompl_sup_right, isCompl_sup_right_of_isCompl_sup_left, instIsModularLattice, inf_covBy_of_covBy_sup, to_isWeakLowerModularLattice, complementedLattice_Icc, complementedLattice_Ici, complementedLattice_Iic, exists_disjoint_and_sup_eq, exists_inf_eq_and_codisjoint, exists_inf_eq_and_sup_eq, inf_sup_inf_assoc, isModularLattice_Ici, isModularLattice_Iic, sup_inf_le_assoc_of_le, sup_inf_sup_assoc, to_isLowerModularLattice, to_isUpperModularLattice, covBy_sup_of_inf_covBy, to_isWeakUpperModularLattice, inf_covBy_of_covBy_covBy_sup, covBy_sup_of_inf_covBy_covBy, isCompl_inf_inf_of_isCompl_of_le, covBy_sup_of_inf_covBy_left, covBy_sup_of_inf_covBy_of_inf_covBy_left, covBy_sup_of_inf_covBy_of_inf_covBy_right, covBy_sup_of_inf_covBy_right, eq_of_le_of_inf_le_of_le_sup, eq_of_le_of_inf_le_of_sup_le, eq_of_le_of_sup_le_of_inf_le, eq_of_le_of_sup_le_of_le_inf, infIccOrderIsoIccSup_apply_coe, infIccOrderIsoIccSup_symm_apply_coe, infIooOrderIsoIooSup_apply_coe, infIooOrderIsoIooSup_symm_apply_coe, inf_covBy_of_covBy_sup_left, inf_covBy_of_covBy_sup_of_covBy_sup_left, inf_covBy_of_covBy_sup_of_covBy_sup_right, inf_covBy_of_covBy_sup_right, inf_lt_inf_of_lt_of_sup_le_sup, inf_strictMonoOn_Icc_sup, inf_sup_assoc_of_le, inf_sup_le_assoc_of_le, instIsLowerModularLatticeOrderDual, instIsModularLatticeOrderDual, instIsUpperModularLatticeOrderDual, instIsWeakLowerModularLatticeOrderDual, instIsWeakUpperModularLatticeOrderDual, isModularLattice_iff_inf_sup_inf_assoc, strictMono_inf_prod_sup, sup_inf_assoc_of_le, sup_inf_le_assoc_of_le, sup_lt_sup_of_lt_of_inf_le_inf, sup_strictMonoOn_Icc_inf, wellFounded_gt_exact_sequence, wellFounded_lt_exact_sequence
72
Total80

Codisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_inf_left_of_codisjoint_inf_right 📖Codisjoint
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
codisjoint_comm
inf_comm
codisjoint_inf_right_of_codisjoint_inf_left
symm
codisjoint_inf_right_of_codisjoint_inf_left 📖Codisjoint
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
codisjoint_iff_le_sup
eq_top
inf_comm
sup_le
le_sup_left
LE.le.trans'
sup_le_sup_right
inf_le_right
IsModularLattice.inf_sup_inf_assoc
top_inf_eq
le_refl
exists_isCompl 📖mathematicalCodisjoint
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
BoundedOrder.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
IsComplComplementedLattice.exists_isCompl
inf_le_right
isCompl_inf_left_of_isCompl_inf_right
IsCompl.symm
isCompl_inf_left_of_isCompl_inf_right 📖Codisjoint
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
BoundedOrder.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
IsCompl
SemilatticeInf.toMin
Lattice.toSemilatticeInf
disjoint_assoc
IsCompl.disjoint
codisjoint_inf_left_of_codisjoint_inf_right
IsCompl.codisjoint
isCompl_inf_right_of_isCompl_inf_left 📖Codisjoint
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
BoundedOrder.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
IsCompl
SemilatticeInf.toMin
Lattice.toSemilatticeInf
disjoint_assoc
IsCompl.disjoint
codisjoint_inf_right_of_codisjoint_inf_left
IsCompl.codisjoint

CovBy

Theorems

NameKindAssumesProvesValidatesDepends On
inf_of_sup_left 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
inf_covBy_of_covBy_sup_left
inf_of_sup_of_sup_left 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
inf_covBy_of_covBy_sup_of_covBy_sup_left
inf_of_sup_of_sup_right 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
inf_covBy_of_covBy_sup_of_covBy_sup_right
inf_of_sup_right 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
inf_covBy_of_covBy_sup_right
sup_of_inf_left 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
covBy_sup_of_inf_covBy_left
sup_of_inf_of_inf_left 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
covBy_sup_of_inf_covBy_of_inf_covBy_left
sup_of_inf_of_inf_right 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
covBy_sup_of_inf_covBy_of_inf_covBy_right
sup_of_inf_right 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
covBy_sup_of_inf_covBy_right

Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_sup_left_of_disjoint_sup_right 📖Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
disjoint_comm
sup_comm
disjoint_sup_right_of_disjoint_sup_left
symm
disjoint_sup_right_of_disjoint_sup_left 📖Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
disjoint_iff_inf_le
eq_bot
sup_comm
le_inf
inf_le_left
LE.le.trans
inf_le_inf_right
le_sup_right
IsModularLattice.sup_inf_sup_assoc
bot_sup_eq
le_refl
exists_isCompl 📖mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
IsComplComplementedLattice.exists_isCompl
le_sup_right
isCompl_sup_left_of_isCompl_sup_right
IsCompl.symm
isCompl_sup_left_of_isCompl_sup_right 📖Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
IsCompl
SemilatticeSup.toMax
Lattice.toSemilatticeSup
disjoint_sup_left_of_disjoint_sup_right
IsCompl.disjoint
codisjoint_assoc
IsCompl.codisjoint
isCompl_sup_right_of_isCompl_sup_left 📖Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
IsCompl
SemilatticeSup.toMax
Lattice.toSemilatticeSup
disjoint_sup_right_of_disjoint_sup_left
IsCompl.disjoint
codisjoint_assoc
IsCompl.codisjoint

DistribLattice

Theorems

NameKindAssumesProvesValidatesDepends On
instIsModularLattice 📖mathematicalIsModularLattice
toLattice
inf_sup_right
inf_eq_left
le_refl

IsCompl

Definitions

NameCategoryTheorems
IicOrderIsoIci 📖CompOp

IsLowerModularLattice

Theorems

NameKindAssumesProvesValidatesDepends On
inf_covBy_of_covBy_sup 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin
to_isWeakLowerModularLattice 📖mathematicalIsWeakLowerModularLatticeCovBy.inf_of_sup_right

IsModularLattice

Theorems

NameKindAssumesProvesValidatesDepends On
complementedLattice_Icc 📖mathematicalComplementedLattice
Set.Elem
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Set.Icc.lattice
Set.Icc.instBoundedOrderElemOfFactLe
exists_inf_eq_and_sup_eq
inf_le_right
le_sup_right
complementedLattice_Ici 📖mathematicalComplementedLattice
Set.Elem
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Set.Ici.lattice
Set.Ici.boundedOrder
BoundedOrder.toOrderTop
Preorder.toLE
exists_inf_eq_and_codisjoint
inf_le_right
complementedLattice_Iic 📖mathematicalComplementedLattice
Set.Elem
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Set.Iic.instLatticeElem
Set.Iic.instBoundedOrderElemOfOrderBot
BoundedOrder.toOrderBot
Preorder.toLE
exists_disjoint_and_sup_eq
le_sup_right
exists_disjoint_and_sup_eq 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Disjoint
BoundedOrder.toOrderBot
SemilatticeSup.toMax
Lattice.toSemilatticeSup
exists_inf_eq_and_sup_eq
exists_inf_eq_and_codisjoint 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
Codisjoint
BoundedOrder.toOrderTop
exists_inf_eq_and_sup_eq
exists_inf_eq_and_sup_eq 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ComplementedLattice.exists_isCompl
inf_sup_assoc_of_le
Disjoint.eq_bot
sup_of_le_right
LE.le.trans
sup_inf_assoc_of_le
Codisjoint.eq_top
sup_of_le_left
inf_of_le_right
inf_sup_inf_assoc 📖mathematicalSemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
sup_inf_assoc_of_le
inf_le_right
isModularLattice_Ici 📖mathematicalIsModularLattice
Set.Elem
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Set.Ici.lattice
sup_inf_le_assoc_of_le
isModularLattice_Iic 📖mathematicalIsModularLattice
Set.Elem
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Set.Iic.instLatticeElem
sup_inf_le_assoc_of_le
sup_inf_le_assoc_of_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
sup_inf_sup_assoc 📖mathematicalSemilatticeInf.toMin
Lattice.toSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
inf_sup_assoc_of_le
le_sup_right
to_isLowerModularLattice 📖mathematicalIsLowerModularLatticesup_comm
inf_comm
Equiv.isEmpty_congr
to_isUpperModularLattice 📖mathematicalIsUpperModularLatticeEquiv.isEmpty_congr

IsUpperModularLattice

Theorems

NameKindAssumesProvesValidatesDepends On
covBy_sup_of_inf_covBy 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
to_isWeakUpperModularLattice 📖mathematicalIsWeakUpperModularLatticeCovBy.sup_of_inf_right

IsWeakLowerModularLattice

Theorems

NameKindAssumesProvesValidatesDepends On
inf_covBy_of_covBy_covBy_sup 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin

IsWeakUpperModularLattice

Theorems

NameKindAssumesProvesValidatesDepends On
covBy_sup_of_inf_covBy_covBy 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup

Set.Iic

Theorems

NameKindAssumesProvesValidatesDepends On
isCompl_inf_inf_of_isCompl_of_le 📖mathematicalIsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Preorder.toLE
PartialOrder.toPreorder
Set
Set.instMembership
Set.Iic
Subtype.partialOrder
instBoundedOrderElemOfOrderBot
BoundedOrder.toOrderBot
SemilatticeInf.toMin
inf_le_left
inf_le_left
inf_comm
inf_assoc
IsCompl.inf_eq_bot
inf_of_le_left
inf_of_le_right
IsModularLattice.inf_sup_inf_assoc
IsCompl.sup_eq_top

(root)

Definitions

NameCategoryTheorems
IsLowerModularLattice 📖CompData
2 mathmath: instIsLowerModularLatticeOrderDual, IsModularLattice.to_isLowerModularLattice
IsModularLattice 📖CompData
9 mathmath: instIsModularLatticeOrderDual, instIsModularLatticeSubgroup, instIsModularLatticeAddSubgroup, DistribLattice.instIsModularLattice, IsModularLattice.isModularLattice_Ici, IsModularLattice.isModularLattice_Iic, Submodule.instIsModularLattice, isModularLattice_iff_inf_sup_inf_assoc, LieSubmodule.instIsModularLattice
IsUpperModularLattice 📖CompData
2 mathmath: instIsUpperModularLatticeOrderDual, IsModularLattice.to_isUpperModularLattice
IsWeakLowerModularLattice 📖CompData
2 mathmath: instIsWeakLowerModularLatticeOrderDual, IsLowerModularLattice.to_isWeakLowerModularLattice
IsWeakUpperModularLattice 📖CompData
2 mathmath: IsUpperModularLattice.to_isWeakUpperModularLattice, instIsWeakUpperModularLatticeOrderDual
infIccOrderIsoIccSup 📖CompOp
2 mathmath: infIccOrderIsoIccSup_apply_coe, infIccOrderIsoIccSup_symm_apply_coe
infIooOrderIsoIooSup 📖CompOp
2 mathmath: infIooOrderIsoIooSup_symm_apply_coe, infIooOrderIsoIooSup_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
covBy_sup_of_inf_covBy_left 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
IsUpperModularLattice.covBy_sup_of_inf_covBy
covBy_sup_of_inf_covBy_of_inf_covBy_left 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
IsWeakUpperModularLattice.covBy_sup_of_inf_covBy_covBy
covBy_sup_of_inf_covBy_of_inf_covBy_right 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
inf_comm
sup_comm
covBy_sup_of_inf_covBy_of_inf_covBy_left
covBy_sup_of_inf_covBy_right 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
sup_comm
inf_comm
covBy_sup_of_inf_covBy_left
eq_of_le_of_inf_le_of_le_sup 📖Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
LE.le.antisymm
sup_inf_assoc_of_le
inf_eq_right
sup_le_iff
Eq.le
inf_comm
eq_of_le_of_inf_le_of_sup_le 📖Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
eq_of_le_of_inf_le_of_le_sup
LE.le.trans
inf_le_left
le_sup_left
eq_of_le_of_sup_le_of_inf_le 📖Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
eq_of_le_of_sup_le_of_le_inf
LE.le.trans'
le_sup_left
inf_le_left
eq_of_le_of_sup_le_of_le_inf 📖Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
LE.le.antisymm'
inf_sup_assoc_of_le
sup_eq_right
le_inf_iff
Eq.ge
sup_comm
infIccOrderIsoIccSup_apply_coe 📖mathematicalSet
Set.instMembership
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
RelIso
Set.Elem
SemilatticeInf.toMin
Preorder.toLE
RelIso.instFunLike
infIccOrderIsoIccSup
infIccOrderIsoIccSup_symm_apply_coe 📖mathematicalSet
Set.instMembership
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
DFunLike.coe
RelIso
Set.Elem
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Preorder.toLE
RelIso.instFunLike
RelIso.symm
infIccOrderIsoIccSup
infIooOrderIsoIooSup_apply_coe 📖mathematicalSet
Set.instMembership
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
RelIso
Set.Elem
SemilatticeInf.toMin
Preorder.toLE
RelIso.instFunLike
infIooOrderIsoIooSup
infIooOrderIsoIooSup_symm_apply_coe 📖mathematicalSet
Set.instMembership
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
DFunLike.coe
RelIso
Set.Elem
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Preorder.toLE
RelIso.instFunLike
RelIso.symm
infIooOrderIsoIooSup
inf_covBy_of_covBy_sup_left 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
IsLowerModularLattice.inf_covBy_of_covBy_sup
inf_covBy_of_covBy_sup_of_covBy_sup_left 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
IsWeakLowerModularLattice.inf_covBy_of_covBy_covBy_sup
inf_covBy_of_covBy_sup_of_covBy_sup_right 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
sup_comm
inf_comm
inf_covBy_of_covBy_sup_of_covBy_sup_left
inf_covBy_of_covBy_sup_right 📖mathematicalCovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
inf_comm
sup_comm
inf_covBy_of_covBy_sup_left
inf_lt_inf_of_lt_of_sup_le_sup 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
Preorder.toLE
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
lt_of_le_of_ne'
inf_le_inf_right
le_of_lt
ne_of_gt
eq_of_le_of_sup_le_of_inf_le
ge_of_eq
inf_strictMonoOn_Icc_sup 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
Set.Icc
SemilatticeSup.toMax
Lattice.toSemilatticeSup
StrictMono.of_restrict
OrderIso.strictMono
inf_sup_assoc_of_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
SemilatticeSup.toMax
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ge_antisymm
inf_sup_le_assoc_of_le
sup_le
inf_le_inf_left
le_sup_left
le_inf
le_sup_right
inf_sup_le_assoc_of_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
inf_comm
sup_comm
sup_inf_le_assoc_of_le
instIsLowerModularLatticeOrderDual 📖mathematicalIsLowerModularLattice
OrderDual
OrderDual.instLattice
CovBy.toDual
CovBy.sup_of_inf_left
CovBy.ofDual
instIsModularLatticeOrderDual 📖mathematicalIsModularLattice
OrderDual
OrderDual.instLattice
le_of_eq
inf_comm
sup_comm
sup_inf_assoc_of_le
instIsUpperModularLatticeOrderDual 📖mathematicalIsUpperModularLattice
OrderDual
OrderDual.instLattice
CovBy.toDual
CovBy.inf_of_sup_left
CovBy.ofDual
instIsWeakLowerModularLatticeOrderDual 📖mathematicalIsWeakLowerModularLattice
OrderDual
OrderDual.instLattice
CovBy.toDual
CovBy.sup_of_inf_of_inf_left
CovBy.ofDual
instIsWeakUpperModularLatticeOrderDual 📖mathematicalIsWeakUpperModularLattice
OrderDual
OrderDual.instLattice
CovBy.toDual
CovBy.inf_of_sup_of_sup_left
CovBy.ofDual
isModularLattice_iff_inf_sup_inf_assoc 📖mathematicalIsModularLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
IsModularLattice.inf_sup_inf_assoc
inf_eq_left
le_refl
strictMono_inf_prod_sup 📖mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Prod.instPreorder
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
inf_le_inf_right
LT.lt.le
sup_le_sup_right
LT.lt.not_ge
sup_lt_sup_of_lt_of_inf_le_inf
sup_inf_assoc_of_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
le_antisymm
sup_inf_le_assoc_of_le
le_inf
sup_le_sup_left
inf_le_left
sup_le
inf_le_right
sup_inf_le_assoc_of_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
IsModularLattice.sup_inf_le_assoc_of_le
sup_lt_sup_of_lt_of_inf_le_inf 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Preorder.toLE
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
lt_of_le_of_ne
sup_le_sup_right
le_of_lt
ne_of_lt
eq_of_le_of_inf_le_of_sup_le
le_of_eq
sup_strictMonoOn_Icc_inf 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Set.Icc
SemilatticeInf.toMin
StrictMono.of_restrict
OrderIso.strictMono
wellFounded_gt_exact_sequence 📖mathematicalSemilatticeInf.toMin
Lattice.toSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
WellFoundedGT
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
wellFounded_lt_exact_sequence
instIsModularLatticeOrderDual
instWellFoundedLTOrderDualOfWellFoundedGT
wellFounded_lt_exact_sequence 📖mathematicalSemilatticeInf.toMin
Lattice.toSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
WellFoundedLT
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
StrictMono.wellFoundedLT
Prod.wellFoundedLT
GaloisCoinsertion.l_le_l_iff
GaloisInsertion.u_le_u_iff
strictMono_inf_prod_sup

---

← Back to Index