Documentation Verification Report

Monovary

πŸ“ Source: Mathlib/Order/Monotone/Monovary.lean

Statistics

MetricCount
DefinitionsAntivary, AntivaryOn, Monovary, MonovaryOn
4
Theoremsantivary, monovary, antivaryOn, monovaryOn, antivaryOn, comp_antitone_left, comp_monotone_left, comp_right, dual, dual_left, dual_right, comp_antitoneOn_right, comp_antitone_on_left, comp_monotoneOn_right, comp_monotone_on_left, comp_right, dual, dual_left, dual_right, empty, subset, antivary, monovary, antivaryOn, monovaryOn, comp_antitone_left, comp_monotone_left, comp_right, dual, dual_left, dual_right, monovaryOn, comp_antitoneOn_right, comp_antitone_on_left, comp_monotoneOn_right, comp_monotone_on_left, comp_right, dual, dual_left, dual_right, empty, subset, trans_antivary, trans_monovary, trans_antivaryOn, trans_monovaryOn, trans_antivary, trans_monovary, trans_antivaryOn, trans_monovaryOn, antivary, antivaryOn, monovary, monovaryOn, antivaryOn_comm, antivaryOn_const_left, antivaryOn_const_right, antivaryOn_id_iff, antivaryOn_iff_antivary, antivaryOn_toDual_left, antivaryOn_toDual_right, antivaryOn_univ, antivary_comm, antivary_const_left, antivary_const_right, antivary_id_iff, antivary_toDual_left, antivary_toDual_right, monovaryOn_comm, monovaryOn_const_left, monovaryOn_const_right, monovaryOn_id_iff, monovaryOn_iff_monovary, monovaryOn_self, monovaryOn_toDual_left, monovaryOn_toDual_right, monovaryOn_univ, monovary_comm, monovary_const_left, monovary_const_right, monovary_id_iff, monovary_self, monovary_toDual_left, monovary_toDual_right
84
Total88

Antitone

Theorems

NameKindAssumesProvesValidatesDepends On
antivary πŸ“–mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monotone
Antivaryβ€”Monovary.dual_right
monovary
Monotone.dual_right
monovary πŸ“–mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monovaryβ€”Antivary.dual_left
Monotone.antivary
dual_right

AntitoneOn

Theorems

NameKindAssumesProvesValidatesDepends On
antivaryOn πŸ“–mathematicalAntitoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MonotoneOn
AntivaryOnβ€”MonovaryOn.dual_right
monovaryOn
MonotoneOn.dual_right
monovaryOn πŸ“–mathematicalAntitoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MonovaryOnβ€”AntivaryOn.dual_left
MonotoneOn.antivaryOn
dual_right

Antivary

Theorems

NameKindAssumesProvesValidatesDepends On
antivaryOn πŸ“–mathematicalAntivaryAntivaryOnβ€”β€”
comp_antitone_left πŸ“–mathematicalAntivary
Antitone
Monovaryβ€”β€”
comp_monotone_left πŸ“–β€”Antivary
Monotone
β€”β€”β€”
comp_right πŸ“–β€”Antivaryβ€”β€”β€”
dual πŸ“–mathematicalAntivaryOrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
dual_left πŸ“–mathematicalAntivaryMonovary
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
dual_right πŸ“–mathematicalAntivaryMonovary
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”

AntivaryOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp_antitoneOn_right πŸ“–mathematicalAntivaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AntitoneOn
Set.image
MonovaryOnβ€”AntitoneOn.reflect_lt
Set.mem_image_of_mem
comp_antitone_on_left πŸ“–mathematicalAntivaryOn
Antitone
MonovaryOnβ€”β€”
comp_monotoneOn_right πŸ“–β€”AntivaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MonotoneOn
Set.image
β€”β€”MonotoneOn.reflect_lt
Set.mem_image_of_mem
comp_monotone_on_left πŸ“–β€”AntivaryOn
Monotone
β€”β€”β€”
comp_right πŸ“–mathematicalAntivaryOnSet.preimageβ€”β€”
dual πŸ“–mathematicalAntivaryOnOrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
dual_left πŸ“–mathematicalAntivaryOnMonovaryOn
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
dual_right πŸ“–mathematicalAntivaryOnMonovaryOn
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
empty πŸ“–mathematicalβ€”AntivaryOn
Set
Set.instEmptyCollection
β€”β€”
subset πŸ“–β€”Set
Set.instHasSubset
AntivaryOn
β€”β€”β€”

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
antivary πŸ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Antitone
Antivaryβ€”Monovary.dual_right
monovary
Antitone.dual_right
monovary πŸ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monovaryβ€”LT.lt.le
reflect_lt

MonotoneOn

Theorems

NameKindAssumesProvesValidatesDepends On
antivaryOn πŸ“–mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AntitoneOn
AntivaryOnβ€”MonovaryOn.dual_right
monovaryOn
AntitoneOn.dual_right
monovaryOn πŸ“–mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MonovaryOnβ€”LT.lt.le
reflect_lt

Monovary

Theorems

NameKindAssumesProvesValidatesDepends On
comp_antitone_left πŸ“–mathematicalMonovary
Antitone
Antivaryβ€”β€”
comp_monotone_left πŸ“–β€”Monovary
Monotone
β€”β€”β€”
comp_right πŸ“–β€”Monovaryβ€”β€”β€”
dual πŸ“–mathematicalMonovaryOrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
dual_left πŸ“–mathematicalMonovaryAntivary
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
dual_right πŸ“–mathematicalMonovaryAntivary
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
monovaryOn πŸ“–mathematicalMonovaryMonovaryOnβ€”β€”

MonovaryOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp_antitoneOn_right πŸ“–mathematicalMonovaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AntitoneOn
Set.image
AntivaryOnβ€”AntitoneOn.reflect_lt
Set.mem_image_of_mem
comp_antitone_on_left πŸ“–mathematicalMonovaryOn
Antitone
AntivaryOnβ€”β€”
comp_monotoneOn_right πŸ“–β€”MonovaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MonotoneOn
Set.image
β€”β€”MonotoneOn.reflect_lt
Set.mem_image_of_mem
comp_monotone_on_left πŸ“–β€”MonovaryOn
Monotone
β€”β€”β€”
comp_right πŸ“–mathematicalMonovaryOnSet.preimageβ€”β€”
dual πŸ“–mathematicalMonovaryOnOrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
dual_left πŸ“–mathematicalMonovaryOnAntivaryOn
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
dual_right πŸ“–mathematicalMonovaryOnAntivaryOn
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
empty πŸ“–mathematicalβ€”MonovaryOn
Set
Set.instEmptyCollection
β€”β€”
subset πŸ“–β€”Set
Set.instHasSubset
MonovaryOn
β€”β€”β€”

StrictAnti

Theorems

NameKindAssumesProvesValidatesDepends On
trans_antivary πŸ“–mathematicalStrictAnti
PartialOrder.toPreorder
Antivary
Monotoneβ€”monotone_iff_forall_lt
trans_monovary πŸ“–mathematicalStrictAnti
PartialOrder.toPreorder
Monovary
Antitoneβ€”antitone_iff_forall_lt

StrictAntiOn

Theorems

NameKindAssumesProvesValidatesDepends On
trans_antivaryOn πŸ“–mathematicalStrictAntiOn
PartialOrder.toPreorder
AntivaryOn
MonotoneOnβ€”monotoneOn_iff_forall_lt
trans_monovaryOn πŸ“–mathematicalStrictAntiOn
PartialOrder.toPreorder
MonovaryOn
AntitoneOnβ€”antitoneOn_iff_forall_lt

StrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
trans_antivary πŸ“–mathematicalStrictMono
PartialOrder.toPreorder
Antivary
Antitoneβ€”antitone_iff_forall_lt
trans_monovary πŸ“–mathematicalStrictMono
PartialOrder.toPreorder
Monovary
Monotoneβ€”monotone_iff_forall_lt

StrictMonoOn

Theorems

NameKindAssumesProvesValidatesDepends On
trans_antivaryOn πŸ“–mathematicalStrictMonoOn
PartialOrder.toPreorder
AntivaryOn
AntitoneOnβ€”antitoneOn_iff_forall_lt
trans_monovaryOn πŸ“–mathematicalStrictMonoOn
PartialOrder.toPreorder
MonovaryOn
MonotoneOnβ€”monotoneOn_iff_forall_lt

Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
antivary πŸ“–mathematicalβ€”Antivaryβ€”LT.lt.ne
antivaryOn πŸ“–mathematicalβ€”AntivaryOnβ€”LT.lt.ne
monovary πŸ“–mathematicalβ€”Monovaryβ€”LT.lt.ne
monovaryOn πŸ“–mathematicalβ€”MonovaryOnβ€”LT.lt.ne

(root)

Definitions

NameCategoryTheorems
Antivary πŸ“–MathDef
49 mathmath: Monotone.antivary, monovary_inv_left, antivary_iff_smul_rearrangement, antivary_invβ‚€, Monovary.dual_left, Antitone.antivary, antivary_inv, Monovary.of_inv_left, monovary_toDual_right, monovary_inv_rightβ‚€, Monovary.of_neg_left, antivary_inv_rightβ‚€, Monovary.inv_right, antivaryOn_univ, Monovary.neg_right, antivary_neg, Monovary.inv_left, antivary_toDual_right, antivary_iff_exists_monotone_antitone, Monovary.inv_rightβ‚€, Monovary.inv_leftβ‚€, antivary_inv_left, Monovary.dual_right, antivaryOn_iff_antivary, antivary_neg_left, antivary_iff_mul_rearrangement, antivary_id_iff, antivary_const_right, monovary_toDual_left, Monovary.of_inv_right, Monovary.comp_antitone_left, antivary_toDual_left, antivary_iff_forall_mul_nonpos, Subsingleton.antivary, Monovary.of_inv_rightβ‚€, monovary_inv_leftβ‚€, antivary_iff_forall_smul_nonpos, antivary_comm, monovary_neg_right, monovary_inv_right, antivary_const_left, Monovary.of_inv_leftβ‚€, Monovary.of_neg_right, antivary_neg_right, antivary_inv_leftβ‚€, monovary_neg_left, antivary_iff_exists_antitone_monotone, antivary_inv_right, Monovary.neg_left
AntivaryOn πŸ“–MathDef
52 mathmath: antivaryOn_comm, MonovaryOn.inv_right, MonovaryOn.of_inv_right, antivaryOn_toDual_left, antivaryOn_inv_leftβ‚€, antivaryOn_inv_right, AntitoneOn.antivaryOn, MonovaryOn.dual_left, antivaryOn_const_left, monovaryOn_inv_right, MonovaryOn.of_neg_left, MonovaryOn.of_inv_left, antivaryOn_neg_left, MonovaryOn.inv_leftβ‚€, antivaryOn_univ, MonovaryOn.inv_rightβ‚€, MonovaryOn.dual_right, antivaryOn_iff_exists_monotoneOn_antitoneOn, monovaryOn_toDual_right, monovaryOn_neg_right, antivaryOn_invβ‚€, MonovaryOn.of_inv_leftβ‚€, MonovaryOn.comp_antitoneOn_right, monovaryOn_neg_left, antivaryOn_inv, MonotoneOn.antivaryOn, antivaryOn_iff_antivary, AntivaryOn.empty, antivaryOn_inv_left, antivaryOn_iff_smul_rearrangement, MonovaryOn.of_inv_rightβ‚€, antivaryOn_neg, monovaryOn_inv_leftβ‚€, antivaryOn_id_iff, antivaryOn_iff_forall_mul_nonpos, antivaryOn_toDual_right, MonovaryOn.neg_right, antivaryOn_neg_right, antivaryOn_iff_exists_antitoneOn_monotoneOn, antivaryOn_const_right, antivaryOn_iff_forall_smul_nonpos, antivaryOn_iff_mul_rearrangement, MonovaryOn.inv_left, MonovaryOn.of_neg_right, antivaryOn_inv_rightβ‚€, MonovaryOn.comp_antitone_on_left, MonovaryOn.neg_left, monovaryOn_toDual_left, monovaryOn_inv_rightβ‚€, Antivary.antivaryOn, monovaryOn_inv_left, Subsingleton.antivaryOn
Monovary πŸ“–MathDef
50 mathmath: Antivary.inv_right, monovary_inv, monovary_iff_mul_rearrangement, monovary_inv_left, Antivary.neg_right, Antivary.of_neg_right, monovary_toDual_right, monovary_inv_rightβ‚€, Antivary.inv_rightβ‚€, monovaryOn_iff_monovary, Antivary.neg_left, Antivary.dual_left, Antivary.inv_leftβ‚€, antivary_inv_rightβ‚€, monovary_iff_forall_smul_nonneg, monovary_neg, antivary_toDual_right, monovary_iff_smul_rearrangement, monovary_comm, monovary_iff_exists_antitone, Antivary.of_inv_leftβ‚€, monovary_self, antivary_inv_left, Antivary.of_inv_left, Monotone.monovary, antivary_neg_left, monovary_id_iff, monovary_const_left, monovary_const_right, monovaryOn_univ, monovary_iff_forall_mul_nonneg, monovary_toDual_left, monovary_invβ‚€, Antivary.of_inv_right, antivary_toDual_left, Antivary.dual_right, Antitone.monovary, monovary_inv_leftβ‚€, monovary_neg_right, monovary_inv_right, Subsingleton.monovary, antivary_neg_right, Antivary.inv_left, antivary_inv_leftβ‚€, monovary_neg_left, antivary_inv_right, Antivary.comp_antitone_left, Antivary.of_inv_rightβ‚€, monovary_iff_exists_monotone, Antivary.of_neg_left
MonovaryOn πŸ“–MathDef
53 mathmath: AntivaryOn.comp_antitoneOn_right, AntivaryOn.of_inv_rightβ‚€, monovaryOn_invβ‚€, Monovary.monovaryOn, AntivaryOn.neg_left, AntivaryOn.inv_leftβ‚€, antivaryOn_toDual_left, monovaryOn_inv, antivaryOn_inv_leftβ‚€, AntitoneOn.monovaryOn, AntivaryOn.dual_right, monovaryOn_comm, antivaryOn_inv_right, monovaryOn_neg, monovaryOn_const_right, monovaryOn_iff_forall_smul_nonneg, monovaryOn_iff_monovary, monovaryOn_inv_right, monovaryOn_self, antivaryOn_neg_left, MonovaryOn.empty, AntivaryOn.of_neg_right, monovaryOn_iff_exists_monotoneOn, monovaryOn_toDual_right, monovaryOn_neg_right, AntivaryOn.comp_antitone_on_left, monovaryOn_iff_smul_rearrangement, monovaryOn_neg_left, antivaryOn_inv_left, monovaryOn_univ, AntivaryOn.of_inv_leftβ‚€, monovaryOn_inv_leftβ‚€, Subsingleton.monovaryOn, monovaryOn_id_iff, AntivaryOn.dual_left, MonotoneOn.monovaryOn, antivaryOn_toDual_right, AntivaryOn.inv_rightβ‚€, AntivaryOn.neg_right, AntivaryOn.of_neg_left, antivaryOn_neg_right, monovaryOn_const_left, monovaryOn_iff_exists_antitoneOn, monovaryOn_iff_mul_rearrangement, AntivaryOn.of_inv_left, AntivaryOn.inv_right, AntivaryOn.inv_left, antivaryOn_inv_rightβ‚€, AntivaryOn.of_inv_right, monovaryOn_toDual_left, monovaryOn_inv_rightβ‚€, monovaryOn_inv_left, monovaryOn_iff_forall_mul_nonneg

Theorems

NameKindAssumesProvesValidatesDepends On
antivaryOn_comm πŸ“–mathematicalβ€”AntivaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”AntivaryOn.symm
antivaryOn_const_left πŸ“–mathematicalβ€”AntivaryOnβ€”le_rfl
antivaryOn_const_right πŸ“–mathematicalβ€”AntivaryOnβ€”LT.lt.ne
antivaryOn_id_iff πŸ“–mathematicalβ€”AntivaryOn
PartialOrder.toPreorder
AntitoneOn
β€”antitoneOn_iff_forall_lt
antivaryOn_iff_antivary πŸ“–mathematicalβ€”AntivaryOn
Antivary
Set.Elem
Set
Set.instMembership
β€”β€”
antivaryOn_toDual_left πŸ“–mathematicalβ€”AntivaryOn
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
MonovaryOn
β€”β€”
antivaryOn_toDual_right πŸ“–mathematicalβ€”AntivaryOn
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
MonovaryOn
β€”forallβ‚‚_swap
antivaryOn_univ πŸ“–mathematicalβ€”AntivaryOn
Set.univ
Antivary
β€”β€”
antivary_comm πŸ“–mathematicalβ€”Antivary
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Antivary.symm
antivary_const_left πŸ“–mathematicalβ€”Antivaryβ€”le_rfl
antivary_const_right πŸ“–mathematicalβ€”Antivaryβ€”LT.lt.ne
antivary_id_iff πŸ“–mathematicalβ€”Antivary
PartialOrder.toPreorder
Antitone
β€”antitone_iff_forall_lt
antivary_toDual_left πŸ“–mathematicalβ€”Antivary
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Monovary
β€”β€”
antivary_toDual_right πŸ“–mathematicalβ€”Antivary
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Monovary
β€”forall_swap
monovaryOn_comm πŸ“–mathematicalβ€”MonovaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”MonovaryOn.symm
monovaryOn_const_left πŸ“–mathematicalβ€”MonovaryOnβ€”le_rfl
monovaryOn_const_right πŸ“–mathematicalβ€”MonovaryOnβ€”LT.lt.ne
monovaryOn_id_iff πŸ“–mathematicalβ€”MonovaryOn
PartialOrder.toPreorder
MonotoneOn
β€”monotoneOn_iff_forall_lt
monovaryOn_iff_monovary πŸ“–mathematicalβ€”MonovaryOn
Monovary
Set.Elem
Set
Set.instMembership
β€”β€”
monovaryOn_self πŸ“–mathematicalβ€”MonovaryOnβ€”le_of_lt
monovaryOn_toDual_left πŸ“–mathematicalβ€”MonovaryOn
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
AntivaryOn
β€”β€”
monovaryOn_toDual_right πŸ“–mathematicalβ€”MonovaryOn
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
AntivaryOn
β€”forallβ‚‚_swap
monovaryOn_univ πŸ“–mathematicalβ€”MonovaryOn
Set.univ
Monovary
β€”β€”
monovary_comm πŸ“–mathematicalβ€”Monovary
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Monovary.symm
monovary_const_left πŸ“–mathematicalβ€”Monovaryβ€”le_rfl
monovary_const_right πŸ“–mathematicalβ€”Monovaryβ€”LT.lt.ne
monovary_id_iff πŸ“–mathematicalβ€”Monovary
PartialOrder.toPreorder
Monotone
β€”monotone_iff_forall_lt
monovary_self πŸ“–mathematicalβ€”Monovaryβ€”le_of_lt
monovary_toDual_left πŸ“–mathematicalβ€”Monovary
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Antivary
β€”β€”
monovary_toDual_right πŸ“–mathematicalβ€”Monovary
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Antivary
β€”forall_swap

---

← Back to Index