Documentation Verification Report

Union

📁 Source: Mathlib/Order/Monotone/Union.lean

Statistics

MetricCount
Definitions0
TheoremsIic_union_Ici, union_right, Iic_union_Ici, union_right, Iic_union_Ici, union, Iic_union_Ici, union
8
Total8

AntitoneOn

Theorems

NameKindAssumesProvesValidatesDepends On
Iic_union_Ici 📖mathematicalAntitoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iic
Set.Ici
AntitoneMonotone.dual_right
MonotoneOn.Iic_union_Ici
dual_right
union_right 📖mathematicalAntitoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsGreatest
Preorder.toLE
IsLeast
Set
Set.instUnion
MonotoneOn.dual_right
MonotoneOn.union_right
dual_right

MonotoneOn

Theorems

NameKindAssumesProvesValidatesDepends On
Iic_union_Ici 📖mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iic
Set.Ici
MonotonemonotoneOn_univ
Set.Iic_union_Ici
union_right
isGreatest_Iic
isLeast_Ici
union_right 📖mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsGreatest
Preorder.toLE
IsLeast
Set
Set.instUnion
eq_or_lt_of_le
lt_irrefl
LT.lt.trans_le
lt_or_ge
LT.lt.le
LE.le.trans

StrictAntiOn

Theorems

NameKindAssumesProvesValidatesDepends On
Iic_union_Ici 📖mathematicalStrictAntiOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iic
Set.Ici
StrictAntiStrictMono.dual_right
StrictMonoOn.Iic_union_Ici
dual_right
union 📖mathematicalStrictAntiOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsGreatest
Preorder.toLE
IsLeast
Set
Set.instUnion
StrictMonoOn.dual_right
StrictMonoOn.union
dual_right

StrictMonoOn

Theorems

NameKindAssumesProvesValidatesDepends On
Iic_union_Ici 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iic
Set.Ici
StrictMonostrictMonoOn_univ
Set.Iic_union_Ici
union
isGreatest_Iic
isLeast_Ici
union 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsGreatest
Preorder.toLE
IsLeast
Set
Set.instUnion
eq_or_lt_of_le
lt_irrefl
LT.lt.trans_le
lt_or_ge
LT.lt.le
monotoneOn
LE.le.trans

---

← Back to Index