Documentation Verification Report

OrdContinuous

📁 Source: Mathlib/Order/OrdContinuous.lean

Statistics

MetricCount
DefinitionsLeftOrdContinuous, toOrderEmbedding, RightOrdContinuous, toOrderEmbedding
4
TheoremsleftOrdContinuous, rightOrdContinuous, coe_toOrderEmbedding, comp, id, iterate, le_iff, lt_iff, map_ciSup, map_csSup, map_iSup, map_isGreatest, map_sSup, map_sSup', map_sup, mono, rightOrdContinuous_dual, leftOrdContinuous, rightOrdContinuous, coe_toOrderEmbedding, comp, id, iterate, le_iff, lt_iff, map_ciInf, map_csInf, map_iInf, map_inf, map_isLeast, map_sInf, map_sInf', mono, orderDual
34
Total38

GaloisConnection

Theorems

NameKindAssumesProvesValidatesDepends On
leftOrdContinuous 📖mathematicalGaloisConnectionLeftOrdContinuousisLUB_l_image
rightOrdContinuous 📖mathematicalGaloisConnectionRightOrdContinuousisGLB_u_image

LeftOrdContinuous

Definitions

NameCategoryTheorems
toOrderEmbedding 📖CompOp
1 mathmath: coe_toOrderEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toOrderEmbedding 📖mathematicalLeftOrdContinuous
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
toOrderEmbedding
comp 📖LeftOrdContinuousSet.image_image
id 📖mathematicalLeftOrdContinuousSet.image_id
iterate 📖mathematicalLeftOrdContinuousNat.iterateid
comp
le_iff 📖mathematicalLeftOrdContinuous
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Preorder.toLEmap_sup
lt_iff 📖mathematicalLeftOrdContinuous
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Preorder.toLTle_iff
map_ciSup 📖mathematicalLeftOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
BddAbove
Preorder.toLE
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
map_csSup
Set.range_nonempty
map_csSup 📖mathematicalLeftOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.Nonempty
BddAbove
Preorder.toLE
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.image
IsLUB.csSup_eq
isLUB_csSup
Set.Nonempty.image
map_iSup 📖mathematicalLeftOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
map_sSup'
map_isGreatest 📖mathematicalLeftOrdContinuous
IsGreatest
Preorder.toLE
Set.imageSet.mem_image_of_mem
IsGreatest.isLUB
map_sSup 📖mathematicalLeftOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup
Set
Set.instMembership
map_sSup'
sSup_image
map_sSup' 📖mathematicalLeftOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.image
IsLUB.sSup_eq
isLUB_sSup
map_sup 📖mathematicalLeftOrdContinuous
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMaxIsLUB.unique
isLUB_pair
Set.image_pair
mono 📖mathematicalLeftOrdContinuousMonotoneupperBounds_insert
upperBounds_singleton
map_isGreatest
Set.mem_image_of_mem
rightOrdContinuous_dual 📖mathematicalLeftOrdContinuousRightOrdContinuous
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
OrderDual.ofDual

OrderIso

Theorems

NameKindAssumesProvesValidatesDepends On
leftOrdContinuous 📖mathematicalLeftOrdContinuous
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
GaloisConnection.leftOrdContinuous
to_galoisConnection
rightOrdContinuous 📖mathematicalRightOrdContinuous
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
GaloisConnection.rightOrdContinuous
to_galoisConnection

RightOrdContinuous

Definitions

NameCategoryTheorems
toOrderEmbedding 📖CompOp
1 mathmath: coe_toOrderEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toOrderEmbedding 📖mathematicalRightOrdContinuous
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
DFunLike.coe
OrderEmbedding
Preorder.toLE
instFunLikeOrderEmbedding
toOrderEmbedding
comp 📖RightOrdContinuousLeftOrdContinuous.comp
orderDual
id 📖mathematicalRightOrdContinuousSet.image_id
iterate 📖mathematicalRightOrdContinuousNat.iterateLeftOrdContinuous.iterate
orderDual
le_iff 📖mathematicalRightOrdContinuous
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Preorder.toLELeftOrdContinuous.le_iff
orderDual
lt_iff 📖mathematicalRightOrdContinuous
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Preorder.toLTLeftOrdContinuous.lt_iff
orderDual
map_ciInf 📖mathematicalRightOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
BddBelow
Preorder.toLE
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
LeftOrdContinuous.map_ciSup
orderDual
map_csInf 📖mathematicalRightOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.Nonempty
BddBelow
Preorder.toLE
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.image
LeftOrdContinuous.map_csSup
orderDual
map_iInf 📖mathematicalRightOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
LeftOrdContinuous.map_iSup
orderDual
map_inf 📖mathematicalRightOrdContinuous
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMinLeftOrdContinuous.map_sup
orderDual
map_isLeast 📖mathematicalRightOrdContinuous
IsLeast
Preorder.toLE
Set.imageLeftOrdContinuous.map_isGreatest
orderDual
map_sInf 📖mathematicalRightOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
iInf
Set
Set.instMembership
LeftOrdContinuous.map_sSup
orderDual
map_sInf' 📖mathematicalRightOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.image
LeftOrdContinuous.map_sSup'
orderDual
mono 📖mathematicalRightOrdContinuousMonotoneMonotone.dual
LeftOrdContinuous.mono
orderDual
orderDual 📖mathematicalRightOrdContinuousLeftOrdContinuous
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
OrderDual.ofDual

(root)

Definitions

NameCategoryTheorems
LeftOrdContinuous 📖MathDef
4 mathmath: RightOrdContinuous.orderDual, GaloisConnection.leftOrdContinuous, LeftOrdContinuous.id, OrderIso.leftOrdContinuous
RightOrdContinuous 📖MathDef
4 mathmath: LeftOrdContinuous.rightOrdContinuous_dual, RightOrdContinuous.id, OrderIso.rightOrdContinuous, GaloisConnection.rightOrdContinuous

---

← Back to Index