OrderIsoNat
📁 Source: Mathlib/Order/OrderIsoNat.lean
Statistics
Nat
Definitions
| Name | Category | Theorems |
|---|---|---|
orderEmbeddingOfSet 📖 | CompOp |
Theorems
Nat.Subtype
Definitions
| Name | Category | Theorems |
|---|---|---|
orderIsoOfNat 📖 | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
orderIsoOfNat_apply 📖 | mathematical | — | DFunLike.coeOrderIsoSet.ElemSetSet.instMembershipinstFunLikeOrderIsoorderIsoOfNatofNat | — | Lean.Meta.FastSubsingleton.elimLean.Meta.instFastSubsingletonForallLean.Meta.instFastSubsingletonDecidable |
RelEmbedding
Definitions
| Name | Category | Theorems |
|---|---|---|
natGT 📖 | CompOp | |
natLT 📖 | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
acc_iff_isEmpty_subtype_mem_range 📖 | mathematical | — | IsEmptyRelEmbeddingSetSet.instMembershipSet.rangeDFunLike.coeinstFunLike | — | not_acc_iff_exists_descending_chainmap_rel_iffof_not_not |
coe_natGT 📖 | mathematical | — | DFunLike.coeRelEmbeddinginstFunLikenatGT | — | — |
coe_natLT 📖 | mathematical | — | DFunLike.coeRelEmbeddinginstFunLikenatLT | — | — |
not_acc 📖 | mathematical | — | DFunLike.coeRelEmbeddinginstFunLike | — | acc_iff_isEmpty_subtype_mem_rangenot_isEmpty_iff |
not_wellFounded 📖 | — | — | — | — | wellFounded_iff_isEmptynot_isEmpty_iff |
wellFounded_iff_isEmpty 📖 | mathematical | — | IsEmptyRelEmbedding | — | not_accacc_iff_isEmpty_subtype_mem_rangeinstIsEmptySubtype |
WellFoundedGT
Theorems
(root)
Definitions
| Name | Category | Theorems |
|---|---|---|
monotonicSequenceLimit 📖 | CompOp | |
monotonicSequenceLimitIndex 📖 | CompOp | — |
Theorems
---