Documentation Verification Report

OrderIsoNat

📁 Source: Mathlib/Order/OrderIsoNat.lean

Statistics

MetricCount
DefinitionsorderIsoOfNat, orderEmbeddingOfSet, natGT, natLT, monotonicSequenceLimit, monotonicSequenceLimitIndex
6
TheoremsorderIsoOfNat_apply, coe_orderEmbeddingOfSet, exists_subseq_of_forall_mem_union, orderEmbeddingOfSet_apply, orderEmbeddingOfSet_range, acc_iff_isEmpty_subtype_mem_range, coe_natGT, coe_natLT, not_acc, not_wellFounded, wellFounded_iff_isEmpty, ciSup_eq_monotonicSequenceLimit, iSup_eq_monotonicSequenceLimit, monotone_chain_condition, monotone_chain_condition', exists_covBy_seq_of_wellFoundedLT_wellFoundedGT, exists_covBy_seq_of_wellFoundedLT_wellFoundedGT_of_le, exists_increasing_or_nonincreasing_subseq, exists_increasing_or_nonincreasing_subseq', le_monotonicSequenceLimit, not_strictAnti_of_wellFoundedLT, not_strictMono_of_wellFoundedGT, wellFoundedGT_iff_monotone_chain_condition, wellFoundedGT_iff_monotone_chain_condition'
24
Total30

Nat

Definitions

NameCategoryTheorems
orderEmbeddingOfSet 📖CompOp
3 mathmath: orderEmbeddingOfSet_apply, coe_orderEmbeddingOfSet, orderEmbeddingOfSet_range

Theorems

NameKindAssumesProvesValidatesDepends On
coe_orderEmbeddingOfSet 📖mathematicalDFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
orderEmbeddingOfSet
Set.Elem
Set
Set.instMembership
Subtype.ofNat
exists_subseq_of_forall_mem_union 📖mathematicalSet
Set.instMembership
Set.instUnion
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
Set.eq_univ_of_forall
Set.mem_preimage
instInfiniteNat
orderEmbeddingOfSet_apply 📖mathematicalDFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
orderEmbeddingOfSet
Set
Set.instMembership
Subtype.ofNat
orderEmbeddingOfSet_range 📖mathematicalSet.range
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
orderEmbeddingOfSet
Subtype.coe_comp_ofNat_range

Nat.Subtype

Definitions

NameCategoryTheorems
orderIsoOfNat 📖CompOp
3 mathmath: orderIsoOfNat_apply, Nat.nth_apply_eq_orderIsoOfNat, Nat.nth_eq_orderIsoOfNat

Theorems

NameKindAssumesProvesValidatesDepends On
orderIsoOfNat_apply 📖mathematicalDFunLike.coe
OrderIso
Set.Elem
Set
Set.instMembership
instFunLikeOrderIso
orderIsoOfNat
ofNat
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable

RelEmbedding

Definitions

NameCategoryTheorems
natGT 📖CompOp
1 mathmath: coe_natGT
natLT 📖CompOp
1 mathmath: coe_natLT

Theorems

NameKindAssumesProvesValidatesDepends On
acc_iff_isEmpty_subtype_mem_range 📖mathematicalIsEmpty
RelEmbedding
Set
Set.instMembership
Set.range
DFunLike.coe
instFunLike
not_acc_iff_exists_descending_chain
map_rel_iff
of_not_not
coe_natGT 📖mathematicalDFunLike.coe
RelEmbedding
instFunLike
natGT
coe_natLT 📖mathematicalDFunLike.coe
RelEmbedding
instFunLike
natLT
not_acc 📖mathematicalDFunLike.coe
RelEmbedding
instFunLike
acc_iff_isEmpty_subtype_mem_range
not_isEmpty_iff
not_wellFounded 📖wellFounded_iff_isEmpty
not_isEmpty_iff
wellFounded_iff_isEmpty 📖mathematicalIsEmpty
RelEmbedding
not_acc
acc_iff_isEmpty_subtype_mem_range
instIsEmptySubtype

WellFoundedGT

Theorems

NameKindAssumesProvesValidatesDepends On
ciSup_eq_monotonicSequenceLimit 📖mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
monotonicSequenceLimit
LE.le.antisymm
ciSup_le
le_monotonicSequenceLimit
le_ciSup
iSup_eq_monotonicSequenceLimit 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
DFunLike.coe
OrderHom
Nat.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
OrderHom.instFunLike
monotonicSequenceLimit
LE.le.antisymm
iSup_le
le_monotonicSequenceLimit
le_iSup
monotone_chain_condition 📖mathematicalDFunLike.coe
OrderHom
Nat.instPreorder
PartialOrder.toPreorder
OrderHom.instFunLike
wellFoundedGT_iff_monotone_chain_condition
monotone_chain_condition' 📖mathematicalPreorder.toLT
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
wellFoundedGT_iff_monotone_chain_condition'

(root)

Definitions

NameCategoryTheorems
monotonicSequenceLimit 📖CompOp
3 mathmath: WellFoundedGT.iSup_eq_monotonicSequenceLimit, le_monotonicSequenceLimit, WellFoundedGT.ciSup_eq_monotonicSequenceLimit
monotonicSequenceLimitIndex 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_covBy_seq_of_wellFoundedLT_wellFoundedGT 📖mathematicalIsMin
Preorder.toLE
IsMax
CovBy
Preorder.toLT
Set.nonempty_iff_univ_nonempty
IsWellFounded.wf
isMin_iff_forall_not_lt
WellFounded.not_lt_min
RelEmbedding.not_wellFounded
instIsStrictOrderGt
wellFounded_lt
instWellFoundedLTNat
WellFounded.min_mem
exists_covBy_of_wellFoundedLT
exists_covBy_seq_of_wellFoundedLT_wellFoundedGT_of_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
CovBy
Preorder.toLT
le_rfl
exists_covBy_seq_of_wellFoundedLT_wellFoundedGT
bot_nonempty
Subtype.wellFoundedLT
Subtype.wellFoundedGT
LE.le.trans
LT.lt.le
exists_increasing_or_nonincreasing_subseq 📖mathematicalDFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
exists_increasing_or_nonincreasing_subseq'
IsTrans.trans
lt_of_lt_of_le
exists_increasing_or_nonincreasing_subseq' 📖mathematicalDFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
Set.mem_range_self
Nat.orderEmbeddingOfSet_range
OrderEmbedding.lt_iff_lt
Set.Infinite.eq_1
Set.infinite_coe_iff
LE.le.trans
Finset.le_max'
Set.Finite.mem_toFinset
instIsStrictOrderLt
Nat.find_spec
le_monotonicSequenceLimit 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
monotonicSequenceLimit
le_or_gt
OrderHom.monotone
Eq.ge
Nat.sInf_mem
WellFoundedGT.monotone_chain_condition
LT.lt.le
not_strictAnti_of_wellFoundedLT 📖mathematicalStrictAnti
Nat.instPreorder
RelEmbedding.not_wellFounded
instIsStrictOrderLt
wellFounded_lt
not_strictMono_of_wellFoundedGT 📖mathematicalStrictMono
Nat.instPreorder
not_strictAnti_of_wellFoundedLT
instWellFoundedLTOrderDualOfWellFoundedGT
wellFoundedGT_iff_monotone_chain_condition 📖mathematicalWellFoundedGT
Preorder.toLT
PartialOrder.toPreorder
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
wellFoundedGT_iff_monotone_chain_condition'
lt_iff_le_and_ne
OrderHom.mono
wellFoundedGT_iff_monotone_chain_condition' 📖mathematicalWellFoundedGT
Preorder.toLT
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
WellFounded.has_min
IsWellFounded.wf
Set.range_nonempty
Set.mem_range_self
WellFoundedGT.eq_1
isWellFounded_iff
RelEmbedding.wellFounded_iff_isEmpty
instIsStrictOrderGt
LT.lt.le
RelEmbedding.map_rel_iff

---

← Back to Index