Documentation Verification Report

PiLex

πŸ“ Source: Mathlib/Order/PiLex.lean

Statistics

MetricCount
DefinitionslinearOrder, linearOrder, instBoundedOrderColexForallOfWellFoundedGT, instBoundedOrderLexForallOfWellFoundedLT, instLTColexForall, instLTLexForall, instOrderBotColexForallOfWellFoundedGT, instOrderBotLexForallOfWellFoundedLT, instOrderTopColexForallOfWellFoundedGT, instOrderTopLexForallOfWellFoundedLT, instPartialOrderColexForallOfLinearOrder, instPartialOrderLexForallOfLinearOrder, Β«termΞ β‚—_,_Β»
13
TheoremsisStrictOrder, lt_iff_of_unique, noMaxOrder', isStrictOrder, lt_iff_of_unique, noMaxOrder', apply_le_of_toColex, apply_le_of_toLex, colex_asc, colex_le_iff_of_unique, colex_lt_iff_of_unique, instDenselyOrderedColexForall, instDenselyOrderedLexForall, instNoMaxOrderColexForallOfWellFoundedGTOfNonempty, instNoMaxOrderLexForallOfWellFoundedLTOfNonempty, instNoMinOrderColexForallOfWellFoundedGTOfNonempty, instNoMinOrderLexForallOfWellFoundedLTOfNonempty, isTrichotomous_lex, le_toColex_update_self_iff, le_toLex_update_self_iff, lex_desc, lex_iff_of_unique, lex_le_iff_of_unique, lex_lt_iff_of_unique, lex_lt_of_lt, lex_lt_of_lt_of_preorder, lt_toColex_update_self_iff, lt_toLex_update_self_iff, ofColex_apply, ofLex_apply, toColex_apply, toColex_monotone, toColex_strictMono, toColex_update_le_self_iff, toColex_update_lt_self_iff, toLex_apply, toLex_monotone, toLex_strictMono, toLex_update_le_self_iff, toLex_update_lt_self_iff, trichotomous_lex
41
Total54

Pi

Definitions

NameCategoryTheorems
instBoundedOrderColexForallOfWellFoundedGT πŸ“–CompOpβ€”
instBoundedOrderLexForallOfWellFoundedLT πŸ“–CompOpβ€”
instLTColexForall πŸ“–CompOp
11 mathmath: colex_asc, Colex.lt_iff_of_unique, Colex.noMaxOrder', Colex.isStrictOrder, lt_toColex_update_self_iff, instDenselyOrderedColexForall, Colex.wellFoundedLT, instNoMaxOrderColexForallOfWellFoundedGTOfNonempty, instNoMinOrderColexForallOfWellFoundedGTOfNonempty, colex_lt_iff_of_unique, toColex_update_lt_self_iff
instLTLexForall πŸ“–CompOp
12 mathmath: instNoMinOrderLexForallOfWellFoundedLTOfNonempty, toLex_update_lt_self_iff, Function.Lex.wellFoundedLT, lex_desc, lex_lt_iff_of_unique, Lex.wellFoundedLT, Lex.lt_iff_of_unique, lt_toLex_update_self_iff, instDenselyOrderedLexForall, instNoMaxOrderLexForallOfWellFoundedLTOfNonempty, Lex.isStrictOrder, Lex.noMaxOrder'
instOrderBotColexForallOfWellFoundedGT πŸ“–CompOpβ€”
instOrderBotLexForallOfWellFoundedLT πŸ“–CompOpβ€”
instOrderTopColexForallOfWellFoundedGT πŸ“–CompOpβ€”
instOrderTopLexForallOfWellFoundedLT πŸ“–CompOpβ€”
instPartialOrderColexForallOfLinearOrder πŸ“–CompOp
5 mathmath: toColex_monotone, colex_le_iff_of_unique, toColex_strictMono, toColex_update_le_self_iff, le_toColex_update_self_iff
instPartialOrderLexForallOfLinearOrder πŸ“–CompOp
7 mathmath: lex_le_iff_of_unique, toLex_update_le_self_iff, le_toLex_update_self_iff, Lex.isOrderedAddCancelMonoid, Lex.isOrderedCancelMonoid, toLex_strictMono, toLex_monotone
Β«termΞ β‚—_,_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply_le_of_toColex πŸ“–β€”Colex
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderColexForallOfLinearOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
not_le_of_gt
apply_le_of_toLex πŸ“–β€”Lex
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderLexForallOfLinearOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
not_le_of_gt
colex_asc πŸ“–mathematicalPreorder.toLEColex
instLTColexForall
Preorder.toLT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
Equiv.Perm
Equiv.swap
β€”Equiv.swap_comm
lex_desc
colex_le_iff_of_unique πŸ“–mathematicalβ€”Colex
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderColexForallOfLinearOrder
Unique.instInhabited
β€”β€”
colex_lt_iff_of_unique πŸ“–mathematicalβ€”Colex
instLTColexForall
Preorder.toLT
Unique.instInhabited
β€”Colex.lt_iff_of_unique
instDenselyOrderedColexForall πŸ“–mathematicalDenselyOrderedColex
instLTColexForall
Preorder.toLT
β€”instDenselyOrderedLexForall
instDenselyOrderedLexForall πŸ“–mathematicalDenselyOrderedLex
instLTLexForall
Preorder.toLT
β€”exists_between
Function.update_of_ne
LT.lt.ne
Function.update_self
instNoMaxOrderColexForallOfWellFoundedGTOfNonempty πŸ“–mathematicalNoMaxOrder
Preorder.toLT
PartialOrder.toPreorder
Colex
instLTColexForall
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”instNoMaxOrderLexForallOfWellFoundedLTOfNonempty
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
OrderDual.instNonempty
instNoMaxOrderLexForallOfWellFoundedLTOfNonempty πŸ“–mathematicalNoMaxOrder
Preorder.toLT
PartialOrder.toPreorder
Lex
instLTLexForall
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”NoMaxOrder.exists_gt
instNoMaxOrderForallOfNonempty
toLex_strictMono
instNoMinOrderColexForallOfWellFoundedGTOfNonempty πŸ“–mathematicalNoMinOrder
Preorder.toLT
PartialOrder.toPreorder
Colex
instLTColexForall
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”instNoMinOrderLexForallOfWellFoundedLTOfNonempty
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
OrderDual.instNonempty
instNoMinOrderLexForallOfWellFoundedLTOfNonempty πŸ“–mathematicalNoMinOrder
Preorder.toLT
PartialOrder.toPreorder
Lex
instLTLexForall
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”NoMinOrder.exists_lt
instNoMinOrderForallOfNonempty
toLex_strictMono
isTrichotomous_lex πŸ“–mathematicalβ€”Lexβ€”trichotomous_lex
le_toColex_update_self_iff πŸ“–mathematicalβ€”Colex
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderColexForallOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
Function.update
LinearOrder.toDecidableEq
β€”le_toLex_update_self_iff
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
le_toLex_update_self_iff πŸ“–mathematicalβ€”Lex
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderLexForallOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Function.update
LinearOrder.toDecidableEq
β€”β€”
lex_desc πŸ“–mathematicalPreorder.toLELex
instLTLexForall
Preorder.toLT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Equiv.Perm
Equiv.swap
β€”Equiv.swap_apply_of_ne_of_ne
LT.lt.ne
LT.lt.trans_le
Equiv.swap_apply_left
lex_iff_of_unique πŸ“–mathematicalβ€”Lex
Unique.instInhabited
β€”instIsEmptyFalse
lex_le_iff_of_unique πŸ“–mathematicalβ€”Lex
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderLexForallOfLinearOrder
Unique.instInhabited
β€”β€”
lex_lt_iff_of_unique πŸ“–mathematicalβ€”Lex
instLTLexForall
Preorder.toLT
Unique.instInhabited
β€”Lex.lt_iff_of_unique
lex_lt_of_lt πŸ“–mathematicalPreorder.toLT
preorder
PartialOrder.toPreorder
Lexβ€”lex_lt_of_lt_of_preorder
lex_lt_of_lt_of_preorder πŸ“–mathematicalPreorder.toLT
preorder
Preorder.toLEβ€”lt_def
WellFounded.has_min
lt_of_le_not_ge
lt_toColex_update_self_iff πŸ“–mathematicalβ€”Colex
instLTColexForall
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
Function.update
LinearOrder.toDecidableEq
β€”lt_toLex_update_self_iff
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
lt_toLex_update_self_iff πŸ“–mathematicalβ€”Lex
instLTLexForall
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Function.update
LinearOrder.toDecidableEq
β€”Function.update_self
LT.lt.false
Function.update_of_ne
toLex_strictMono
lt_update_self_iff
ofColex_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
β€”β€”
ofLex_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”β€”
toColex_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”
toColex_monotone πŸ“–mathematicalβ€”Monotone
Colex
preorder
PartialOrder.toPreorder
instPartialOrderColexForallOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”toLex_monotone
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
toColex_strictMono πŸ“–mathematicalβ€”StrictMono
Colex
preorder
PartialOrder.toPreorder
instPartialOrderColexForallOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”toLex_strictMono
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
toColex_update_le_self_iff πŸ“–mathematicalβ€”Colex
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderColexForallOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
Function.update
LinearOrder.toDecidableEq
β€”toLex_update_le_self_iff
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
toColex_update_lt_self_iff πŸ“–mathematicalβ€”Colex
instLTColexForall
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
Function.update
LinearOrder.toDecidableEq
β€”toLex_update_lt_self_iff
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
toLex_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLex_monotone πŸ“–mathematicalβ€”Monotone
Lex
preorder
PartialOrder.toPreorder
instPartialOrderLexForallOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”WellFounded.has_min
IsWellFounded.wf
Function.ne_iff
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
LE.le.lt_of_ne
toLex_strictMono πŸ“–mathematicalβ€”StrictMono
Lex
preorder
PartialOrder.toPreorder
instPartialOrderLexForallOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”WellFounded.has_min
IsWellFounded.wf
Function.ne_iff
LT.lt.ne
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
LE.le.lt_of_ne
LT.lt.le
toLex_update_le_self_iff πŸ“–mathematicalβ€”Lex
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderLexForallOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Function.update
LinearOrder.toDecidableEq
β€”β€”
toLex_update_lt_self_iff πŸ“–mathematicalβ€”Lex
instLTLexForall
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Function.update
LinearOrder.toDecidableEq
β€”Function.update_self
LT.lt.false
Function.update_of_ne
toLex_strictMono
update_lt_self_iff
trichotomous_lex πŸ“–mathematicalβ€”Lexβ€”Function.ne_iff
WellFounded.not_lt_min
Not.imp_symm
WellFounded.min_mem

Pi.Colex

Definitions

NameCategoryTheorems
linearOrder πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isStrictOrder πŸ“–mathematicalβ€”IsStrictOrder
Colex
Pi.instLTColexForall
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Pi.Lex.isStrictOrder
lt_iff_of_unique πŸ“–mathematicalβ€”Colex
Pi.instLTColexForall
Preorder.toLT
Unique.instInhabited
β€”Pi.lex_iff_of_unique
instIrreflGt
noMaxOrder' πŸ“–mathematicalβ€”NoMaxOrder
Colex
Pi.instLTColexForall
Preorder.toLT
β€”Pi.Lex.noMaxOrder'

Pi.Lex

Definitions

NameCategoryTheorems
linearOrder πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isStrictOrder πŸ“–mathematicalβ€”IsStrictOrder
Lex
Pi.instLTLexForall
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”lt_irrefl
lt_trichotomy
LT.lt.trans
lt_iff_of_unique πŸ“–mathematicalβ€”Lex
Pi.instLTLexForall
Preorder.toLT
Unique.instInhabited
β€”Pi.lex_iff_of_unique
instIrreflLt
noMaxOrder' πŸ“–mathematicalβ€”NoMaxOrder
Lex
Pi.instLTLexForall
Preorder.toLT
β€”NoMaxOrder.exists_gt
Function.update_of_ne
LT.lt.ne
Function.update_self

---

← Back to Index