Documentation Verification Report

Chain

πŸ“ Source: Mathlib/Order/Preorder/Chain.lean

Statistics

MetricCount
DefinitionsChain, carrier, instBoundedOrderSubtypeMem, instLinearOrderSubtypeMemOfDecidableLEOfDecidableLTOfDecidableEq, instOrderBotSubtypeMem, instOrderTopSubtypeMem, instPartialOrder, instSetLike, instUnique, map, ofIsMaxChain, IsChain, IsMaxChain, Chain, SuccChain, SuperChain
16
TheoremsChain', bot_mem, chain_le, chain_lt, coe_map, coe_mk, coe_ofIsMaxChain, ext, ext_iff, le_or_le, maxChain, max_chain', mem_coe_iff, mem_iff_forall_le_or_ge, mk_coe, symm_map, top_mem, diff, directed, directedOn, empty, exists3, image, image_embedding, image_embedding_iff, image_iso, image_iso_iff, image_relEmbedding, image_relEmbedding_iff, image_relIso, image_relIso_iff, insert, le_of_not_gt, lt_of_le, lt_of_not_ge, mono, mono_rel, not_le, not_lt, pair, preimage, preimage_embedding, preimage_iso, preimage_iso_iff, preimage_relEmbedding, preimage_relIso, singleton, succ, superChain_succChain, total, bot_mem, image, isChain, isEmpty_iff, nonempty_iff, not_superChain, top_mem, isChain_image, isChain_range, isChain, isChain_coe_univ_iff, isChain_of_trichotomous, isChain_preimage_subtypeVal, isChain_union, isChain_univ_iff, subset_succChain, succChain_spec
67
Total83

Cycle

Definitions

NameCategoryTheorems
Chain πŸ“–MathDef
11 mathmath: Chain.nil, chain_range_succ, Function.periodicOrbit_chain, Function.periodicOrbit_chain', chain_of_pairwise, chain_iff_pairwise, chain_singleton, chain_map, chain_mono, chain_coe_cons, chain_ne_nil

Flag

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
1 mathmath: Chain'
instBoundedOrderSubtypeMem πŸ“–CompOpβ€”
instLinearOrderSubtypeMemOfDecidableLEOfDecidableLTOfDecidableEq πŸ“–CompOpβ€”
instOrderBotSubtypeMem πŸ“–CompOpβ€”
instOrderTopSubtypeMem πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
instSetLike πŸ“–CompOp
25 mathmath: coe_ofIsMaxChain, isMax_coe, coe_map, bot_mem, top_mem, IsChain.exists_subset_flag, coe_covBy_coe, chain_le, exists_mem_mem, isMin_coe, exists_mem, grade_coe, mem_rangeFin, coe_mk, chain_lt, mem_iff_forall_le_or_ge, mk_coe, Module.Basis.mem_toFlag, ext_iff, Module.Basis.toFlag_carrier, mem_coe_iff, rangeFin_carrier, coe_wcovBy_coe, coe_smul, maxChain
instUnique πŸ“–CompOpβ€”
map πŸ“–CompOp
2 mathmath: coe_map, symm_map
ofIsMaxChain πŸ“–CompOp
1 mathmath: coe_ofIsMaxChain

Theorems

NameKindAssumesProvesValidatesDepends On
Chain' πŸ“–mathematicalβ€”IsChain
carrier
β€”β€”
bot_mem πŸ“–mathematicalβ€”Flag
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
β€”IsMaxChain.bot_mem
maxChain
chain_le πŸ“–mathematicalβ€”IsChain
SetLike.coe
Flag
instSetLike
β€”Chain'
chain_lt πŸ“–mathematicalβ€”IsChain
Preorder.toLT
PartialOrder.toPreorder
SetLike.coe
Flag
Preorder.toLE
instSetLike
β€”IsChain.lt_of_le
chain_le
coe_map πŸ“–mathematicalβ€”SetLike.coe
Flag
Preorder.toLE
instSetLike
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
map
Set.image
OrderIso
instFunLikeOrderIso
β€”β€”
coe_mk πŸ“–mathematicalIsChainSetLike.coe
Flag
instSetLike
β€”β€”
coe_ofIsMaxChain πŸ“–mathematicalIsMaxChainSetLike.coe
Flag
instSetLike
ofIsMaxChain
β€”β€”
ext πŸ“–β€”SetLike.coe
Flag
instSetLike
β€”β€”SetLike.ext'
ext_iff πŸ“–mathematicalβ€”SetLike.coe
Flag
instSetLike
β€”ext
le_or_le πŸ“–β€”Flag
Preorder.toLE
SetLike.instMembership
instSetLike
β€”β€”IsChain.total
instReflLe
chain_le
maxChain πŸ“–mathematicalβ€”IsMaxChain
SetLike.coe
Flag
instSetLike
β€”chain_le
max_chain'
max_chain' πŸ“–β€”IsChain
Set
Set.instHasSubset
carrier
β€”β€”β€”
mem_coe_iff πŸ“–mathematicalβ€”Set
Set.instMembership
SetLike.coe
Flag
instSetLike
SetLike.instMembership
β€”β€”
mem_iff_forall_le_or_ge πŸ“–mathematicalβ€”Flag
Preorder.toLE
SetLike.instMembership
instSetLike
β€”le_or_le
of_not_not
Set.ne_insert_of_notMem
maxChain
IsChain.insert
chain_le
Set.subset_insert
mk_coe πŸ“–mathematicalβ€”SetLike.coe
Flag
instSetLike
Chain'
max_chain'
β€”ext
Chain'
max_chain'
symm_map πŸ“–mathematicalβ€”Equiv.symm
Flag
Preorder.toLE
map
OrderIso.symm
β€”β€”
top_mem πŸ“–mathematicalβ€”Flag
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
β€”IsMaxChain.top_mem
maxChain

IsChain

Theorems

NameKindAssumesProvesValidatesDepends On
diff πŸ“–mathematicalIsChainSet
Set.instSDiff
β€”mono
Set.diff_subset
directed πŸ“–mathematicalIsChain
Order.Preimage
Directed
Set
Set.instMembership
β€”by_cases
refl
directedOn πŸ“–mathematicalIsChainDirectedOnβ€”total
refl
empty πŸ“–mathematicalβ€”IsChain
Set
Set.instEmptyCollection
β€”Set.pairwise_empty
exists3 πŸ“–β€”IsChain
Set
Set.instMembership
β€”β€”directedOn_iff_directed
directed
trans
image πŸ“–mathematicalIsChainSet.imageβ€”β€”
image_embedding πŸ“–mathematicalIsChainSet.image
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
β€”image_relEmbedding
image_embedding_iff πŸ“–mathematicalβ€”IsChain
Set.image
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
β€”image_relEmbedding_iff
image_iso πŸ“–mathematicalIsChainSet.image
DFunLike.coe
OrderIso
instFunLikeOrderIso
β€”image_relEmbedding
image_iso_iff πŸ“–mathematicalβ€”IsChain
Set.image
DFunLike.coe
OrderIso
instFunLikeOrderIso
β€”image_relEmbedding_iff
image_relEmbedding πŸ“–mathematicalIsChainSet.image
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
β€”Set.mem_image
image_relEmbedding_iff πŸ“–mathematicalβ€”IsChain
Set.image
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
β€”Function.Injective.preimage_image
RelEmbedding.injective
preimage_relEmbedding
image_relEmbedding
image_relIso πŸ“–mathematicalIsChainSet.image
DFunLike.coe
RelIso
RelIso.instFunLike
β€”image_relEmbedding
image_relIso_iff πŸ“–mathematicalβ€”IsChain
Set.image
DFunLike.coe
RelIso
RelIso.instFunLike
β€”image_relEmbedding_iff
insert πŸ“–mathematicalIsChainSet
Set.instInsert
β€”Set.Pairwise.insert_of_symmetric
le_of_not_gt πŸ“–β€”IsChain
Preorder.toLE
Set
Set.instMembership
Preorder.toLT
β€”β€”total
instReflLe
lt_of_le πŸ“–mathematicalIsChain
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLTβ€”Ne.lt_of_le
Ne.lt_of_le'
lt_of_not_ge πŸ“–mathematicalIsChain
Preorder.toLE
Set
Set.instMembership
Preorder.toLTβ€”total
instReflLe
lt_of_le_not_ge
mono πŸ“–β€”Set
Set.instHasSubset
IsChain
β€”β€”Set.Pairwise.mono
mono_rel πŸ“–β€”IsChainβ€”β€”Set.Pairwise.mono'
not_le πŸ“–mathematicalIsChain
Preorder.toLE
Set
Set.instMembership
Preorder.toLTβ€”lt_of_not_ge
LE.le.not_gt
not_lt πŸ“–mathematicalIsChain
Preorder.toLE
Set
Set.instMembership
Preorder.toLTβ€”le_of_not_gt
LT.lt.not_ge
pair πŸ“–mathematicalβ€”IsChain
Set
Set.instInsert
Set.instSingletonSet
β€”insert
singleton
Set.eq_of_mem_singleton
preimage πŸ“–mathematicalIsChainSet.preimageβ€”β€”
preimage_embedding πŸ“–mathematicalIsChainSet.preimage
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
β€”preimage_relEmbedding
preimage_iso πŸ“–mathematicalIsChainSet.preimage
DFunLike.coe
OrderIso
instFunLikeOrderIso
β€”preimage_relEmbedding
preimage_iso_iff πŸ“–mathematicalβ€”IsChain
Set.preimage
DFunLike.coe
OrderIso
instFunLikeOrderIso
β€”OrderIso.image_preimage
image_iso
preimage_iso
preimage_relEmbedding πŸ“–mathematicalIsChainSet.preimage
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
β€”RelEmbedding.injective
preimage_relIso πŸ“–mathematicalIsChainSet.preimage
DFunLike.coe
RelIso
RelIso.instFunLike
β€”preimage_relEmbedding
singleton πŸ“–mathematicalβ€”IsChain
Set
Set.instSingletonSet
β€”Set.pairwise_singleton
succ πŸ“–mathematicalIsChainSuccChainβ€”succChain_spec
superChain_succChain πŸ“–mathematicalIsChain
IsMaxChain
SuperChain
SuccChain
β€”succChain_spec
ssubset_iff_subset_ne
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
total πŸ“–β€”IsChain
Set
Set.instMembership
β€”β€”eq_or_ne
refl

IsMaxChain

Theorems

NameKindAssumesProvesValidatesDepends On
bot_mem πŸ“–mathematicalIsMaxChainSet
Set.instMembership
Bot.bot
OrderBot.toBot
β€”Set.mem_insert
IsChain.insert
bot_le
Set.subset_insert
image πŸ“–mathematicalIsMaxChainSet.image
DFunLike.coe
RelIso
RelIso.instFunLike
β€”IsChain.image
RelIso.map_rel_iff
isChain
RelIso.coe_fn_toEquiv
Equiv.eq_preimage_iff_image_eq
Equiv.image_symm_eq_preimage
Equiv.subset_symm_image
isChain πŸ“–mathematicalIsMaxChainIsChainβ€”β€”
isEmpty_iff πŸ“–mathematicalIsMaxChainIsEmpty
Set
Set.instEmptyCollection
β€”Set.eq_empty_of_isEmpty
instIsEmptySubtype
Set.singleton_ne_empty
IsChain.singleton
nonempty_iff πŸ“–mathematicalIsMaxChainSet.Nonemptyβ€”not_iff_not
isEmpty_iff
not_superChain πŸ“–mathematicalIsMaxChainSuperChainβ€”HasSSubset.SSubset.ne
Set.instIrreflSSubset
top_mem πŸ“–mathematicalIsMaxChainSet
Set.instMembership
Top.top
OrderTop.toTop
β€”Set.mem_insert
IsChain.insert
le_top
Set.subset_insert

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
isChain_image πŸ“–mathematicalMonotone
IsChain
Preorder.toLE
Set.imageβ€”IsChain.image
isChain_range πŸ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsChain
Preorder.toLE
Set.range
β€”Set.image_univ
isChain_image
isChain_of_trichotomous
instTrichotomousLe

OmegaCompletePartialOrder

Definitions

NameCategoryTheorems
Chain πŸ“–CompOp
21 mathmath: le_ωSup, Part.Fix.approx_mem_approxChain, Chain.zip_coe, ωSup_le_iff, Chain.pair_zero, Chain.map_le_map, Chain.range_pair, ContinuousHom.forall_forall_merge, Chain.directed, Part.mem_ωSup, Chain.ext_iff, Chain.instOrderHomClassNat, Part.mem_chain_of_mem_ωSup, ωScottContinuous.isLUB, Scott.isωSup_iff_isLUB, Chain.map_coe, ContinuousHom.forall_forall_merge', Chain.isChain_range, Chain.mem_map_iff, Chain.pair_succ, isLUB_range_ωSup

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
isChain πŸ“–mathematicalSet.SubsingletonIsChainβ€”pairwise

(root)

Definitions

NameCategoryTheorems
IsChain πŸ“–MathDef
32 mathmath: IsChain.preimage_iso_iff, IsChain.pair, IsChain.image_embedding_iff, isChain_coe_univ_iff, isChain_union, ChainClosure.isChain, ChainCompletePartialOrder.IsExtremePt.bot_isChain, IsChain.image_relEmbedding_iff, isChain_and_isAntichain_iff_subsingleton, Flag.Chain', IsChain.singleton, Flag.chain_le, IsChain.image_relIso_iff, Set.Subsingleton.isChain, Set.exists_eq_chainHeight_of_chainHeight_ne_top, Monotone.isChain_range, IsMaxChain.isChain, isChain_preimage_subtypeVal, SimpleGraph.isClique_iff_isChain_adj, IsChain.empty, Set.not_isChain_of_chainHeight_lt_encard, Flag.chain_lt, isChain_univ_iff, IsChain.image_iso_iff, Set.exists_isChain_of_le_chainHeight, OmegaCompletePartialOrder.Chain.isChain_range, Set.chainHeight_eq_iSup, Set.exists_eq_chainHeight_of_finite, Module.Basis.isChain_range_flag, isChain_of_trichotomous, NonemptyChain.isChain', Set.chainHeight_eq_top_iff
IsMaxChain πŸ“–MathDef
5 mathmath: maxChain_spec, Module.Basis.isMaxChain_range_flag, IsMaxChain.range_fin_of_covBy, IsChain.exists_maxChain, Flag.maxChain
SuccChain πŸ“–CompOp
5 mathmath: succChain_spec, IsChain.succ, subset_succChain, IsChain.superChain_succChain, ChainClosure.succ_fixpoint_iff
SuperChain πŸ“–MathDef
2 mathmath: IsMaxChain.not_superChain, IsChain.superChain_succChain

Theorems

NameKindAssumesProvesValidatesDepends On
isChain_coe_univ_iff πŸ“–mathematicalβ€”IsChain
Set.Elem
Set
Set.instMembership
Set.univ
β€”Set.inter_univ
isChain_preimage_subtypeVal
isChain_of_trichotomous πŸ“–mathematicalβ€”IsChainβ€”trichotomous_of
isChain_preimage_subtypeVal πŸ“–mathematicalβ€”IsChain
Set.Elem
Set
Set.instMembership
Set.preimage
Set.instInter
β€”β€”
isChain_union πŸ“–mathematicalβ€”IsChain
Set
Set.instUnion
β€”IsChain.eq_1
Set.pairwise_union_of_symmetric
isChain_univ_iff πŸ“–mathematicalβ€”IsChain
Set.univ
β€”isChain_of_trichotomous
subset_succChain πŸ“–mathematicalβ€”Set
Set.instHasSubset
SuccChain
β€”succChain_spec
Set.instReflSubset
succChain_spec πŸ“–mathematicalIsChain
SuperChain
SuccChainβ€”β€”

---

← Back to Index