š Source: Mathlib/Order/PrimeSeparator.lean
mem_ideal_sup_principal
prime_ideal_of_disjoint_filter_ideal
Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
toLattice
SetLike.instMembership
Order.Ideal.instSetLike
Order.Ideal.instMax
Lattice.toSemilatticeSup
OrderBot.instIsCodirectedOrder
SemilatticeSup.toPartialOrder
BoundedOrder.toOrderBot
Order.Ideal.principal
SemilatticeSup.toMax
le_trans
sup_le_sup_left
le_refl
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Order.PFilter
Order.PFilter.instSetLike
Order.Ideal.IsPrime
Order.Ideal.instPartialOrderIdeal
Order.Ideal.isIdeal
Order.isIdeal_sUnion_of_isChain
le_sSup
zorn_subset_nonempty
Maximal.prop
Order.Ideal.isProper_of_notMem
Set.disjoint_left
Order.PFilter.top_mem
Order.Ideal.isPrime_iff_mem_or_mem
Mathlib.Tactic.Contrapose.contraposeā
Set.mem_of_subset_of_mem
le_sup_right
Order.Ideal.mem_principal_self
Maximal.eq_of_le
le_sup_left
instIsConcreteLE
Set.not_disjoint_iff
Order.Ideal.sup_mem
inf_le_inf
sup_le_sup
sup_inf_left
Order.PFilter.mem_of_le
Order.PFilter.inf_mem
Mathlib.Tactic.Contrapose.contraposeā
---
ā Back to Index