Documentation Verification Report

PrimeSeparator

šŸ“ Source: Mathlib/Order/PrimeSeparator.lean

Statistics

MetricCount
Definitions0
Theoremsmem_ideal_sup_principal, prime_ideal_of_disjoint_filter_ideal
2
Total2

DistribLattice

Theorems

NameKindAssumesProvesValidatesDepends On
mem_ideal_sup_principal šŸ“–mathematical—Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
toLattice
SetLike.instMembership
Order.Ideal.instSetLike
Order.Ideal.instMax
Lattice.toSemilatticeSup
OrderBot.instIsCodirectedOrder
SemilatticeSup.toPartialOrder
BoundedOrder.toOrderBot
Order.Ideal.principal
SemilatticeSup.toMax
—OrderBot.instIsCodirectedOrder
le_trans
sup_le_sup_left
le_refl
prime_ideal_of_disjoint_filter_ideal šŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Order.PFilter
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
toLattice
Order.PFilter.instSetLike
Order.Ideal
Preorder.toLE
Order.Ideal.instSetLike
Order.Ideal.IsPrime
Order.Ideal.instPartialOrderIdeal
—Order.Ideal.isIdeal
le_refl
Order.isIdeal_sUnion_of_isChain
le_trans
le_sSup
zorn_subset_nonempty
Maximal.prop
Order.Ideal.isProper_of_notMem
Set.disjoint_left
Order.PFilter.top_mem
Order.Ideal.isPrime_iff_mem_or_mem
Mathlib.Tactic.Contrapose.contrapose₁
OrderBot.instIsCodirectedOrder
Set.mem_of_subset_of_mem
le_sup_right
Order.Ideal.mem_principal_self
Maximal.eq_of_le
le_sup_left
instIsConcreteLE
Set.not_disjoint_iff
mem_ideal_sup_principal
Order.Ideal.sup_mem
inf_le_inf
sup_le_sup
sup_inf_left
Order.PFilter.mem_of_le
Order.PFilter.inf_mem
Mathlib.Tactic.Contrapose.contraposeā‚ƒ

---

← Back to Index