Documentation Verification Report

PropInstances

📁 Source: Mathlib/Order/PropInstances.lean

Statistics

MetricCount
DefinitionsdecidablePredBot, decidablePredTop, decidableRelBot, decidableRelTop, instBoundedOrder, instDistribLattice, linearOrder
7
Theoremscodisjoint_iff, disjoint_iff, isCompl_iff, bot_eq_false, codisjoint_iff, disjoint_iff, isCompl_iff, le_total, top_eq_true, inf_Prop_eq, sup_Prop_eq
11
Total18

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_iff 📖mathematicalCodisjoint
partialOrder
instOrderTop
Preorder.toLE
PartialOrder.toPreorder
disjoint_iff
disjoint_iff 📖mathematicalDisjoint
partialOrder
instOrderBot
Preorder.toLE
PartialOrder.toPreorder
update_le_iff
bot_le
isCompl_iff 📖mathematicalIsCompl
partialOrder
instBoundedOrder
Preorder.toLE
PartialOrder.toPreorder

Prop

Definitions

NameCategoryTheorems
decidablePredBot 📖CompOp
decidablePredTop 📖CompOp
1 mathmath: Matrix.toBlock_mul_eq_mul
decidableRelBot 📖CompOp
decidableRelTop 📖CompOp
instBoundedOrder 📖CompOp
8 mathmath: codisjoint_iff, bot_eq_false, isCompl_iff, Set.setOf_bot, disjoint_iff, instIsSimpleOrderProp, Set.setOf_top, top_eq_true
instDistribLattice 📖CompOp
2 mathmath: inf_Prop_eq, sup_Prop_eq
linearOrder 📖CompOp
2 mathmath: Multiset.map_count_True_eq_filter_card, Fintype.univ_Prop

Theorems

NameKindAssumesProvesValidatesDepends On
bot_eq_false 📖mathematicalBot.bot
OrderBot.toBot
le
BoundedOrder.toOrderBot
instBoundedOrder
codisjoint_iff 📖mathematicalCodisjoint
partialOrder
BoundedOrder.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
instBoundedOrder
codisjoint_iff_le_sup
disjoint_iff 📖mathematicalDisjoint
partialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
instBoundedOrder
disjoint_iff_inf_le
isCompl_iff 📖mathematicalIsCompl
partialOrder
instBoundedOrder
isCompl_iff
disjoint_iff
codisjoint_iff
not_iff
le_total 📖mathematicalleinstIsEmptyFalse
top_eq_true 📖mathematicalTop.top
OrderTop.toTop
le
BoundedOrder.toOrderTop
instBoundedOrder

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
inf_Prop_eq 📖mathematicalSemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
Prop.instDistribLattice
sup_Prop_eq 📖mathematicalSemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
Prop.instDistribLattice

---

← Back to Index