Documentation Verification Report

RelClasses

πŸ“ Source: Mathlib/Order/RelClasses.lean

Statistics

MetricCount
DefinitionsexactSubsetOfSSubset, IsNonstrictStrictOrder, IsOrderConnected, IsWellFounded, fix, toWellFoundedRelation, IsWellOrder, linearOrder, toHasWellFounded, Unbounded, WellFoundedGT, fix, toWellFoundedRelation, WellFoundedLT, fix, toWellFoundedRelation, linearOrderOfSTO, partialOrderOfSO
18
Theoremssubset, subset', superset, trans_ssubset, trans_subset, ssubset_imp_ssubset, ssuperset_imp_ssuperset, asymm, false, ne, ne', not_subset, subset, trans, trans_eq, trans_subset, antisymm, antisymm', eq_of_not_ssubset, eq_of_not_ssuperset, eq_or_ssubset, not_ssubset, ssubset_of_ne, ssubset_of_not_subset, ssubset_or_eq, trans, trans_ssubset, trans_eq, asymm, isTrichotomous, trichotomous, swap, right_iff_left_not_left, conn, neg_trans, swap, swap, swap, swap, swap, swap, swap, apply, fix_eq, induction, wf, toIsTrans, toIsWellFounded, toTrichotomous, total, total', ssubset_of_subset, antisymm, instAsymm, instIrrefl, instIsEquiv, instIsPreorder, instIsStrictOrder, instIsStrictWeakOrder, instIsSymm, instIsTrans, instRefl, instTotal, isAntisymm, total_ge, total_le, instIsWellFounded, wellFoundedGT, wellFoundedGT', wellFoundedLT, wellFoundedLT', not_bounded_iff, not_unbounded_iff, unbounded_of_isEmpty, swap, swap, swap, swap, swap, swap, isWellFounded, isWellOrder, asymmetric, asymmetric₃, prod_lex, psigma_lex, psigma_revLex, psigma_skipLeft, apply, fix_eq, induction, apply, fix_eq, induction, asymmetric, asymmetric₃, isWellFounded, eq_empty_relation, eq_of_subset_of_not_ssubset, eq_of_superset_of_not_ssuperset, eq_or_ssubset_of_subset, instAntisymmGe, instAntisymmGt, instAntisymmLe, instAntisymmLt, instAsymmGt, instAsymmLt, instAsymmOfIsWellFounded, instIrreflGt, instIrreflLt, instIrreflOfIsNonstrictStrictOrder, instIsLinearOrderGe, instIsLinearOrderLe, instIsNonstrictStrictOrderGeGt, instIsNonstrictStrictOrderLeLt, instIsPartialOrderGe, instIsPartialOrderLe, instIsPreorderGe, instIsPreorderLe, instIsStrictOrderGt, instIsStrictOrderLt, instIsStrictTotalOrderGt, instIsStrictTotalOrderLt, instIsStrictTotalOrderOfIsWellOrder, instIsTransGe, instIsTransGt, instIsTransLe, instIsTransLt, instIsWellFoundedInvImage, instIsWellFoundedInvImageNatLt, instIsWellFoundedTransGen, instIsWellOrderEmptyRelationOfSubsingleton, instIsWellOrderOfIsEmpty, instIsWellOrderProdLex, instReflGe, instReflLe, instTrichotomousGe, instTrichotomousGt, instTrichotomousLe, instTrichotomousLt, instWellFoundedGTOrderDualOfWellFoundedLT, instWellFoundedLTNat, instWellFoundedLTOrderDualOfWellFoundedGT, isStrictOrderConnected_of_isStrictTotalOrder, isStrictWeakOrder_of_isOrderConnected, isWellFounded_iff, isWellOrder_gt, isWellOrder_lt, ne_of_not_subset, ne_of_not_superset, ne_of_ssubset, ne_of_ssuperset, not_ssubset_of_subset, not_subset_of_ssubset, right_iff_left_not_left, right_iff_left_not_left_of, ssubset_asymm, ssubset_iff_subset_ne, ssubset_iff_subset_not_subset, ssubset_irrefl, ssubset_irrfl, ssubset_of_eq_of_ssubset, ssubset_of_ne_of_subset, ssubset_of_ssubset_of_eq, ssubset_of_ssubset_of_subset, ssubset_of_subset_not_subset, ssubset_of_subset_of_ne, ssubset_of_subset_of_ssubset, ssubset_or_eq_of_subset, ssubset_trans, subset_antisymm, subset_antisymm_iff, subset_iff_ssubset_or_eq, subset_of_eq, subset_of_eq_of_subset, subset_of_ssubset, subset_of_subset_of_eq, subset_refl, subset_rfl, subset_trans, superset_antisymm, superset_antisymm_iff, superset_of_eq, transitive_ge, transitive_gt, transitive_le, transitive_lt, wellFoundedGT_dual_iff, wellFoundedLT_dual_iff, wellFounded_gt, wellFounded_lt
191
Total209

Eq

Theorems

NameKindAssumesProvesValidatesDepends On
subset πŸ“–β€”β€”β€”β€”subset_of_eq
subset' πŸ“–β€”β€”β€”β€”subset
superset πŸ“–β€”β€”β€”β€”superset_of_eq
trans_ssubset πŸ“–β€”β€”β€”β€”ssubset_of_eq_of_ssubset
trans_subset πŸ“–β€”β€”β€”β€”subset_of_eq_of_subset

GCongr

Definitions

NameCategoryTheorems
exactSubsetOfSSubset πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ssubset_imp_ssubset πŸ“–β€”β€”β€”β€”HasSSubset.SSubset.trans_subset
HasSubset.Subset.trans_ssubset
ssuperset_imp_ssuperset πŸ“–β€”β€”β€”β€”ssubset_imp_ssubset

HasSSubset.SSubset

Theorems

NameKindAssumesProvesValidatesDepends On
asymm πŸ“–β€”β€”β€”β€”ssubset_asymm
false πŸ“–β€”β€”β€”β€”ssubset_irrfl
ne πŸ“–β€”β€”β€”β€”ne_of_ssubset
ne' πŸ“–β€”β€”β€”β€”ne_of_ssuperset
not_subset πŸ“–β€”β€”β€”β€”not_subset_of_ssubset
subset πŸ“–β€”β€”β€”β€”subset_of_ssubset
trans πŸ“–β€”β€”β€”β€”ssubset_trans
trans_eq πŸ“–β€”β€”β€”β€”ssubset_of_ssubset_of_eq
trans_subset πŸ“–β€”β€”β€”β€”ssubset_of_ssubset_of_subset

HasSubset.Subset

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm πŸ“–β€”β€”β€”β€”subset_antisymm
antisymm' πŸ“–β€”β€”β€”β€”superset_antisymm
eq_of_not_ssubset πŸ“–β€”β€”β€”β€”eq_of_subset_of_not_ssubset
eq_of_not_ssuperset πŸ“–β€”β€”β€”β€”eq_of_superset_of_not_ssuperset
eq_or_ssubset πŸ“–β€”β€”β€”β€”eq_or_ssubset_of_subset
not_ssubset πŸ“–β€”β€”β€”β€”not_ssubset_of_subset
ssubset_of_ne πŸ“–β€”β€”β€”β€”ssubset_of_subset_of_ne
ssubset_of_not_subset πŸ“–β€”β€”β€”β€”ssubset_of_subset_not_subset
ssubset_or_eq πŸ“–β€”β€”β€”β€”ssubset_or_eq_of_subset
trans πŸ“–β€”β€”β€”β€”subset_trans
trans_ssubset πŸ“–β€”β€”β€”β€”ssubset_of_subset_of_ssubset

HasSubset.subset

Theorems

NameKindAssumesProvesValidatesDepends On
trans_eq πŸ“–β€”β€”β€”β€”subset_of_subset_of_eq

InvImage

Theorems

NameKindAssumesProvesValidatesDepends On
asymm πŸ“–β€”β€”β€”β€”β€”
isTrichotomous πŸ“–β€”β€”β€”β€”trichotomous
trichotomous πŸ“–β€”β€”β€”β€”β€”

IsAsymm

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”Function.swapβ€”Std.Asymm.swap

IsNonstrictStrictOrder

Theorems

NameKindAssumesProvesValidatesDepends On
right_iff_left_not_left πŸ“–β€”β€”β€”β€”β€”

IsOrderConnected

Theorems

NameKindAssumesProvesValidatesDepends On
conn πŸ“–β€”β€”β€”β€”β€”
neg_trans πŸ“–β€”β€”β€”β€”conn

IsPartialOrder

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”IsPartialOrder
Function.swap
β€”IsPreorder.swap
toIsPreorder
Std.Antisymm.swap
toAntisymm

IsPreorder

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”IsPreorder
Function.swap
β€”Std.Refl.swap
toRefl
IsTrans.swap
toIsTrans

IsRefl

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”Function.swapβ€”Std.Refl.swap

IsStrictOrder

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”IsStrictOrder
Function.swap
β€”Std.Irrefl.swap
toIrrefl
IsTrans.swap
toIsTrans

IsStrictTotalOrder

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”IsStrictTotalOrder
Function.swap
β€”Std.Trichotomous.swap
toTrichotomous
IsStrictOrder.swap
toIsStrictOrder

IsTrans

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”IsTrans
Function.swap
β€”trans_of

IsTrichotomous

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”Function.swapβ€”Std.Trichotomous.swap

IsWellFounded

Definitions

NameCategoryTheorems
fix πŸ“–CompOp
1 mathmath: fix_eq
toWellFoundedRelation πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply πŸ“–β€”β€”β€”β€”wf
fix_eq πŸ“–mathematicalβ€”fixβ€”wf
induction πŸ“–β€”β€”β€”β€”wf
wf πŸ“–β€”β€”β€”β€”β€”

IsWellOrder

Definitions

NameCategoryTheorems
linearOrder πŸ“–CompOpβ€”
toHasWellFounded πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
toIsTrans πŸ“–mathematicalβ€”IsTransβ€”β€”
toIsWellFounded πŸ“–mathematicalβ€”IsWellFoundedβ€”β€”
toTrichotomous πŸ“–β€”β€”β€”β€”β€”

LE

Theorems

NameKindAssumesProvesValidatesDepends On
total πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”le_total
total' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”le_total

Ne

Theorems

NameKindAssumesProvesValidatesDepends On
ssubset_of_subset πŸ“–β€”β€”β€”β€”ssubset_of_ne_of_subset

Order.Preimage

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm πŸ“–mathematicalβ€”Order.Preimageβ€”antisymm_of
instAsymm πŸ“–mathematicalβ€”Order.Preimageβ€”asymm_of
instIrrefl πŸ“–mathematicalβ€”Order.Preimageβ€”irrefl_of
instIsEquiv πŸ“–mathematicalβ€”IsEquiv
Order.Preimage
β€”instIsPreorder
IsEquiv.toIsPreorder
instIsSymm
IsEquiv.toSymm
instIsPreorder πŸ“–mathematicalβ€”IsPreorder
Order.Preimage
β€”instRefl
IsPreorder.toRefl
instIsTrans
IsPreorder.toIsTrans
instIsStrictOrder πŸ“–mathematicalβ€”IsStrictOrder
Order.Preimage
β€”instIrrefl
IsStrictOrder.toIrrefl
instIsTrans
IsStrictOrder.toIsTrans
instIsStrictWeakOrder πŸ“–mathematicalβ€”IsStrictWeakOrder
Order.Preimage
β€”instIsStrictOrder
IsStrictWeakOrder.toIsStrictOrder
IsStrictWeakOrder.incomp_trans
instIsSymm πŸ“–mathematicalβ€”Order.Preimageβ€”symm_of
instIsTrans πŸ“–mathematicalβ€”IsTrans
Order.Preimage
β€”trans_of
instRefl πŸ“–mathematicalβ€”Order.Preimageβ€”refl_of
instTotal πŸ“–mathematicalβ€”Order.Preimageβ€”total_of
isAntisymm πŸ“–mathematicalβ€”Order.Preimageβ€”antisymm

OrderDual

Theorems

NameKindAssumesProvesValidatesDepends On
total_ge πŸ“–mathematicalβ€”OrderDual
instLE
β€”Std.Total.swap
total_le πŸ“–mathematicalβ€”OrderDual
instLE
β€”Std.Total.swap

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
wellFoundedGT πŸ“–mathematicalβ€”WellFoundedGT
Preorder.toLT
instPreorder
β€”WellFoundedGT.induction
lt_iff
LT.lt.trans_le'
le_rfl
LE.le.trans'
wellFoundedGT' πŸ“–mathematicalβ€”WellFoundedGT
Preorder.toLT
instPreorder
β€”wellFoundedGT
wellFoundedLT πŸ“–mathematicalβ€”WellFoundedLT
Preorder.toLT
instPreorder
β€”WellFoundedLT.induction
lt_iff
LT.lt.trans_le
le_rfl
LE.le.trans
wellFoundedLT' πŸ“–mathematicalβ€”WellFoundedLT
Preorder.toLT
instPreorder
β€”wellFoundedLT

Prod.Lex

Theorems

NameKindAssumesProvesValidatesDepends On
instIsWellFounded πŸ“–mathematicalβ€”IsWellFoundedβ€”WellFounded.prod_lex
IsWellFounded.wf

Set

Definitions

NameCategoryTheorems
Unbounded πŸ“–MathDef
37 mathmath: unbounded_ge_univ, unbounded_lt_iff_unbounded_le, unbounded_gt_univ, unbounded_gt_inter_gt, unbounded_le_inter_not_le, unbounded_le_inter_le, unbounded_lt_inter_le, unbounded_inter_not, unbounded_inter_ge, not_bounded_iff, unbounded_gt_inter_not_gt, Ordinal.unbounded_range_of_le_iSup, unbounded_le_Ioi, unbounded_ge_iff_unbounded_inter_ge, unbounded_of_isEmpty, unbounded_lt_iff, not_unbounded_iff, unbounded_gt_iff, unbounded_le_iff, Ordinal.ord_cof_eq, unbounded_ge_inter_gt, unbounded_ge_inter_not_ge, unbounded_gt_of_forall_exists_ge, unbounded_lt_inter_not_lt, unbounded_lt_univ, unbounded_le_of_forall_exists_lt, unbounded_le_inter_lt, unbounded_lt_Ici, unbounded_le_univ, unbounded_lt_of_forall_exists_le, Ordinal.cof_eq, unbounded_ge_of_forall_exists_gt, unbounded_ge_iff, unbounded_le_Ici, unbounded_gt_iff_unbounded_ge, unbounded_lt_inter_lt, unbounded_lt_Ioi

Theorems

NameKindAssumesProvesValidatesDepends On
not_bounded_iff πŸ“–mathematicalβ€”Bounded
Unbounded
β€”β€”
not_unbounded_iff πŸ“–mathematicalβ€”Unbounded
Bounded
β€”not_iff_comm
not_bounded_iff
unbounded_of_isEmpty πŸ“–mathematicalβ€”Unboundedβ€”β€”

Std.Antisymm

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”Function.swapβ€”antisymm

Std.Asymm

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”Function.swapβ€”asymm_of

Std.Irrefl

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”Function.swapβ€”irrefl_of

Std.Refl

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”Function.swapβ€”refl_of

Std.Total

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”Function.swapβ€”total_of

Std.Trichotomous

Theorems

NameKindAssumesProvesValidatesDepends On
swap πŸ“–mathematicalβ€”Function.swapβ€”β€”

Subrelation

Theorems

NameKindAssumesProvesValidatesDepends On
isWellFounded πŸ“–mathematicalβ€”IsWellFoundedβ€”IsWellFounded.wf

Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
isWellOrder πŸ“–mathematicalβ€”IsWellOrderβ€”not_rel_of_subsingleton

WellFounded

Theorems

NameKindAssumesProvesValidatesDepends On
asymmetric πŸ“–β€”β€”β€”β€”WellFoundedRelation.asymmetric
asymmetric₃ πŸ“–β€”β€”β€”β€”WellFoundedRelation.asymmetric₃
prod_lex πŸ“–β€”β€”β€”β€”β€”
psigma_lex πŸ“–β€”β€”β€”β€”β€”
psigma_revLex πŸ“–β€”β€”β€”β€”β€”
psigma_skipLeft πŸ“–β€”β€”β€”β€”psigma_revLex

WellFoundedGT

Definitions

NameCategoryTheorems
fix πŸ“–CompOp
1 mathmath: fix_eq
toWellFoundedRelation πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply πŸ“–β€”β€”β€”β€”IsWellFounded.apply
fix_eq πŸ“–mathematicalβ€”fixβ€”IsWellFounded.fix_eq
induction πŸ“–β€”β€”β€”β€”IsWellFounded.induction

WellFoundedLT

Definitions

NameCategoryTheorems
fix πŸ“–CompOp
1 mathmath: fix_eq
toWellFoundedRelation πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply πŸ“–β€”β€”β€”β€”IsWellFounded.apply
fix_eq πŸ“–mathematicalβ€”fixβ€”IsWellFounded.fix_eq
induction πŸ“–β€”β€”β€”β€”IsWellFounded.induction

WellFoundedRelation

Theorems

NameKindAssumesProvesValidatesDepends On
asymmetric πŸ“–β€”β€”β€”β€”β€”
asymmetric₃ πŸ“–β€”β€”β€”β€”β€”
isWellFounded πŸ“–mathematicalβ€”IsWellFoundedβ€”β€”

(root)

Definitions

NameCategoryTheorems
IsNonstrictStrictOrder πŸ“–CompData
8 mathmath: PSet.instIsNonstrictStrictOrderSubsetSSubset, instIsNonstrictStrictOrderGeGt, ZFSet.instIsNonstrictStrictOrderSubsetSSubset, Finset.instIsNonstrictStrictOrderSubsetSSubset, Set.instIsNonstrictStrictOrderSubsetSSubset, Multiset.instIsNonstrictStrictOrder, instIsNonstrictStrictOrderLeLt, instIsNonstrictStrictOrderWCovByCovBy
IsOrderConnected πŸ“–CompData
2 mathmath: isStrictOrderConnected_of_isStrictTotalOrder, List.Lex.isOrderConnected
IsWellFounded πŸ“–CompData
22 mathmath: instIsWellFoundedInvImage, PSet.instIsWellFoundedMem, IsWellFounded.wellOrderExtension.isWellFounded_lt, instIsWellFoundedInvImageNatLt, Multiset.isWellFounded_ssubset, Prod.Lex.instIsWellFounded, Finset.isWellFounded_ssubset, EuclideanDomain.isWellFounded, isWellFounded_iff, ZFSet.instIsWellFoundedMem, Subrel.instIsWellFoundedSubtype, IsWellOrder.toIsWellFounded, WellFoundedRelation.isWellFounded, instIsWellFoundedTransGen, RelEmbedding.isWellFounded, RelHomClass.isWellFounded, SSet.Subcomplex.Pairing.instIsWellFoundedElemNIIAncestralRel, UniqueFactorizationMonoid.toIsWellFounded, Class.instIsWellFoundedMem, Relation.instIsWellFoundedMultisetCutExpand, Subrelation.isWellFounded, instIsWellFoundedChainsLex_chains
IsWellOrder πŸ“–CompData
37 mathmath: OrderEmbedding.isWellOrder, RelEmbedding.isWellOrder, Ordinal.liftOnWellOrder_type, WithTop.IsWellOrder.gt, Ordinal.liftPrincipalSeg_top', isWellOrder_lt, WithTop.IsWellOrder.lt, isWellOrder_gt, WithBot.IsWellOrder.lt, instIsWellOrderEmptyRelationOfSubsingleton, Fin.Lt.isWellOrder, InitialSeg.exists_sum_relIso, Subsingleton.isWellOrder, Cardinal.ord_eq_Inf, Ordinal.le_enum_succ, Subrel.instIsWellOrderSubtype, RelIso.IsWellOrder.preimage, WellOrderingRel.isWellOrder, Sum.instIsWellOrderLex, ZFSet.IsOrdinal.isWellOrder, Cardinal.type_cardinal, Ordinal.enum_succ_eq_top, instIsWellOrderProdLex, IsWellFounded.exists_well_order_ge, Ordinal.univ_id, Ordinal.type_nat_lt, ZFSet.isOrdinal_iff_isWellOrder, RelIso.IsWellOrder.ulift, Ordinal.enum_zero_le', IsWellFounded.wellOrderExtension.isWellOrder_lt, Ordinal.familyOfBFamily_enum, instIsWellOrderOfIsEmpty, Ordinal.type_toType, IsWellOrder.subtype_nonempty, WithBot.IsWellOrder.gt, Ordinal.type_fin, WellOrder.wo
WellFoundedGT πŸ“–MathDef
40 mathmath: isNoetherian_iff', WithTop.instWellFoundedGT, wellFoundedLT_dual_iff, CompleteLattice.wellFoundedGT_iff_isSupFiniteCompact, StrictMono.wellFoundedGT, CategoryTheory.instWellFoundedGTSubobjectOfIsNoetherianObject, SemigroupIdeal.instWellFoundedGT, Prod.wellFoundedGT', instWellFoundedGTAntisymmetrizationLe, isNoetherian_iff_fg_wellFounded, instWellFoundedGTTrivial, instWellFoundedGTOfGradeOrderOrderDualNat, CompleteLattice.isSupClosedCompact_iff_wellFoundedGT, IsNoetherian.wellFoundedGT, AddSemigroupIdeal.instWellFoundedGT, instWellFoundedGTOrderDualOfWellFoundedLT, CompleteLattice.IsSupClosedCompact.wellFoundedGT, Bool.instWellFoundedGT, wellFoundedGT_antisymmetrization_iff, Prod.wellFoundedGT, wellFoundedGT_iff_monotone_chain_condition, ULift.instWellFoundedGT, wellFoundedGT_dual_iff, LieSubmodule.wellFoundedGT_of_noetherian, StrictAnti.wellFoundedGT, CompleteLattice.IsSupFiniteCompact.wellFoundedGT, OrderEmbedding.wellFoundedGT, CompleteLattice.wellFoundedGT_characterisations, WithBot.instWellFoundedGT, instWellFoundedGTUnit, wellFoundedGT, Finite.to_wellFoundedGT, wellFounded_gt_exact_sequence, wellFoundedGT_iff_monotone_chain_condition', LieSubalgebra.wellFoundedGT_of_noetherian, Subtype.wellFoundedGT, instWellFoundedGTShrink, GradeOrder.wellFoundedGT, Prop.instWellFoundedGT, instWellFoundedGTWithZeroMultiplicativeIntLeOne
WellFoundedLT πŸ“–MathDef
58 mathmath: WellOrderExtension.wellFoundedLT, wellFoundedLT_dual_iff, Bool.instWellFoundedLT, GradeOrder.wellFoundedLT, instWellFoundedLTSubtypeSetFinite, Subtype.wellFoundedLT, PartENat.instWellFoundedLT, Finsupp.Colex.wellFoundedLT, exists_wellOrder, Function.Lex.wellFoundedLT, Prod.wellFoundedLT, Finsupp.Colex.wellFoundedLT_of_finite, wellQuasiOrderedLE_iff_wellFoundedLT, StrictAnti.wellFoundedLT, Ordinal.wellFoundedLT, ULift.instWellFoundedLT, instWellFoundedLTAntisymmetrizationLe, Finsupp.wellFoundedLT', WithBot.instWellFoundedLT, wellFoundedLT_antisymmetrization_iff, Nimber.instWellFoundedLT, Multiset.instWellFoundedLT, instWellFoundedLTShrink, Function.wellFoundedLT, Cardinal.instWellFoundedLT, instWellFoundedLTOrderDualOfWellFoundedGT, TopologicalSpace.noetherianSpace_TFAE, Finset.wellFoundedLT, Prop.instWellFoundedLT, MonomialOrder.wf, LieSubmodule.wellFoundedLT_of_isArtinian, instWellFoundedLTNat, wellFoundedGT_dual_iff, Finite.to_wellFoundedLT, OrderEmbedding.wellFoundedLT, PNat.instWellFoundedLT, TopologicalSpace.instWellFoundedLTClosedsOfNoetherianSpace, Finsupp.wellFoundedLT, Set.isWF_univ_iff, WithTop.instWellFoundedLT, CategoryTheory.instWellFoundedLTSubobjectOfIsArtinianObject, WfDvdMonoid.iff_wellFounded_associates, NatOrdinal.instWellFoundedLT, Prod.Lex.instWellFoundedLTLex, StrictMono.wellFoundedLT, Finsupp.DegLex.wellFoundedLT, Finsupp.Lex.wellFoundedLT, wellQuasiOrderedLE_iff, instWellFoundedLTOfGradeOrderNat, WfDvdMonoid.wellFoundedLT_associates, WellQuasiOrderedLE.to_wellFoundedLT, Finsupp.wellFoundedLT_of_finite, Prod.wellFoundedLT', Profinite.NobelingProof.Products.instWellFoundedLT, wellFoundedLT_toType, Finsupp.Lex.wellFoundedLT_of_finite, wellFounded_lt_exact_sequence, NONote.instWellFoundedLT
linearOrderOfSTO πŸ“–CompOpβ€”
partialOrderOfSO πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
eq_empty_relation πŸ“–β€”β€”β€”β€”not_rel_of_subsingleton
eq_of_subset_of_not_ssubset πŸ“–β€”β€”β€”β€”eq_or_ssubset_of_subset
eq_of_superset_of_not_ssuperset πŸ“–β€”β€”β€”β€”eq_or_ssubset_of_subset
eq_or_ssubset_of_subset πŸ“–β€”β€”β€”β€”HasSubset.Subset.antisymm
HasSubset.Subset.ssubset_of_not_subset
em
instAntisymmGe πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
β€”ge_antisymm
instAntisymmGt πŸ“–mathematicalβ€”Preorder.toLTβ€”Std.Asymm.antisymm
instAsymmGt
instAntisymmLe πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
β€”le_antisymm
instAntisymmLt πŸ“–mathematicalβ€”Preorder.toLTβ€”Std.Asymm.antisymm
instAsymmLt
instAsymmGt πŸ“–mathematicalβ€”Preorder.toLTβ€”lt_asymm
instAsymmLt πŸ“–mathematicalβ€”Preorder.toLTβ€”lt_asymm
instAsymmOfIsWellFounded πŸ“–β€”β€”β€”β€”WellFounded.asymmetric
IsWellFounded.wf
instIrreflGt πŸ“–mathematicalβ€”Preorder.toLTβ€”lt_irrefl
instIrreflLt πŸ“–mathematicalβ€”Preorder.toLTβ€”lt_irrefl
instIrreflOfIsNonstrictStrictOrder πŸ“–β€”β€”β€”β€”right_iff_left_not_left_of
instIsLinearOrderGe πŸ“–mathematicalβ€”IsLinearOrder
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”instIsPartialOrderGe
LE.total'
instIsLinearOrderLe πŸ“–mathematicalβ€”IsLinearOrder
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”instIsPartialOrderLe
LE.total
instIsNonstrictStrictOrderGeGt πŸ“–mathematicalβ€”IsNonstrictStrictOrder
Preorder.toLE
Preorder.toLT
β€”lt_iff_le_not_ge
instIsNonstrictStrictOrderLeLt πŸ“–mathematicalβ€”IsNonstrictStrictOrder
Preorder.toLE
Preorder.toLT
β€”lt_iff_le_not_ge
instIsPartialOrderGe πŸ“–mathematicalβ€”IsPartialOrder
Preorder.toLE
PartialOrder.toPreorder
β€”instIsPreorderGe
instAntisymmGe
instIsPartialOrderLe πŸ“–mathematicalβ€”IsPartialOrder
Preorder.toLE
PartialOrder.toPreorder
β€”instIsPreorderLe
instAntisymmLe
instIsPreorderGe πŸ“–mathematicalβ€”IsPreorder
Preorder.toLE
β€”instReflGe
instIsTransGe
instIsPreorderLe πŸ“–mathematicalβ€”IsPreorder
Preorder.toLE
β€”instReflLe
instIsTransLe
instIsStrictOrderGt πŸ“–mathematicalβ€”IsStrictOrder
Preorder.toLT
β€”instIrreflGt
instIsTransGt
instIsStrictOrderLt πŸ“–mathematicalβ€”IsStrictOrder
Preorder.toLT
β€”instIrreflLt
instIsTransLt
instIsStrictTotalOrderGt πŸ“–mathematicalβ€”IsStrictTotalOrder
Preorder.toLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”instTrichotomousGt
instIsStrictOrderGt
instIsStrictTotalOrderLt πŸ“–mathematicalβ€”IsStrictTotalOrder
Preorder.toLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”instTrichotomousLt
instIsStrictOrderLt
instIsStrictTotalOrderOfIsWellOrder πŸ“–mathematicalβ€”IsStrictTotalOrderβ€”IsWellOrder.toTrichotomous
instAsymmOfIsWellFounded
IsWellOrder.toIsWellFounded
IsWellOrder.toIsTrans
instIsTransGe πŸ“–mathematicalβ€”IsTrans
Preorder.toLE
β€”ge_trans
instIsTransGt πŸ“–mathematicalβ€”IsTrans
Preorder.toLT
β€”gt_trans
instIsTransLe πŸ“–mathematicalβ€”IsTrans
Preorder.toLE
β€”le_trans
instIsTransLt πŸ“–mathematicalβ€”IsTrans
Preorder.toLT
β€”lt_trans
instIsWellFoundedInvImage πŸ“–mathematicalβ€”IsWellFoundedβ€”IsWellFounded.wf
instIsWellFoundedInvImageNatLt πŸ“–mathematicalβ€”IsWellFoundedβ€”β€”
instIsWellFoundedTransGen πŸ“–mathematicalβ€”IsWellFoundedβ€”IsWellFounded.wf
instIsWellOrderEmptyRelationOfSubsingleton πŸ“–mathematicalβ€”IsWellOrderβ€”Subsingleton.isWellOrder
instIrreflEmptyRelation_mathlib
instIsWellOrderOfIsEmpty πŸ“–mathematicalβ€”IsWellOrderβ€”wellFounded_of_isEmpty
instIsWellOrderProdLex πŸ“–mathematicalβ€”IsWellOrderβ€”IsWellOrder.toTrichotomous
trans
IsWellOrder.toIsTrans
Prod.Lex.instIsWellFounded
IsWellOrder.toIsWellFounded
instReflGe πŸ“–mathematicalβ€”Preorder.toLEβ€”le_refl
instReflLe πŸ“–mathematicalβ€”Preorder.toLEβ€”le_refl
instTrichotomousGe πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”LE.total'
instTrichotomousGt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”β€”
instTrichotomousLe πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”LE.total
instTrichotomousLt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”β€”
instWellFoundedGTOrderDualOfWellFoundedLT πŸ“–mathematicalβ€”WellFoundedGT
OrderDual
OrderDual.instLT
β€”β€”
instWellFoundedLTNat πŸ“–mathematicalβ€”WellFoundedLTβ€”β€”
instWellFoundedLTOrderDualOfWellFoundedGT πŸ“–mathematicalβ€”WellFoundedLT
OrderDual
OrderDual.instLT
β€”β€”
isStrictOrderConnected_of_isStrictTotalOrder πŸ“–mathematicalβ€”IsOrderConnectedβ€”trans
IsStrictOrder.toIsTrans
IsStrictTotalOrder.toIsStrictOrder
trichotomous
IsStrictTotalOrder.toTrichotomous
isStrictWeakOrder_of_isOrderConnected πŸ“–mathematicalβ€”IsStrictWeakOrderβ€”Std.Asymm.irrefl
IsOrderConnected.conn
asymm
IsOrderConnected.neg_trans
isWellFounded_iff πŸ“–mathematicalβ€”IsWellFoundedβ€”β€”
isWellOrder_gt πŸ“–mathematicalβ€”IsWellOrder
Preorder.toLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”instTrichotomousGt
instIsTransGt
isWellOrder_lt πŸ“–mathematicalβ€”IsWellOrder
Preorder.toLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”instTrichotomousLt
instIsTransLt
ne_of_not_subset πŸ“–β€”β€”β€”β€”subset_of_eq
ne_of_not_superset πŸ“–β€”β€”β€”β€”superset_of_eq
ne_of_ssubset πŸ“–β€”β€”β€”β€”ne_of_irrefl
ne_of_ssuperset πŸ“–β€”β€”β€”β€”ne_of_irrefl'
not_ssubset_of_subset πŸ“–β€”β€”β€”β€”not_subset_of_ssubset
not_subset_of_ssubset πŸ“–β€”β€”β€”β€”ssubset_iff_subset_not_subset
right_iff_left_not_left πŸ“–β€”β€”β€”β€”IsNonstrictStrictOrder.right_iff_left_not_left
right_iff_left_not_left_of πŸ“–β€”β€”β€”β€”right_iff_left_not_left
ssubset_asymm πŸ“–β€”β€”β€”β€”asymm
ssubset_iff_subset_ne πŸ“–β€”β€”β€”β€”HasSSubset.SSubset.subset
HasSSubset.SSubset.ne
instIrreflOfIsNonstrictStrictOrder
HasSubset.Subset.ssubset_of_ne
ssubset_iff_subset_not_subset πŸ“–β€”β€”β€”β€”right_iff_left_not_left
ssubset_irrefl πŸ“–β€”β€”β€”β€”irrefl
ssubset_irrfl πŸ“–β€”β€”β€”β€”irrefl
ssubset_of_eq_of_ssubset πŸ“–β€”β€”β€”β€”β€”
ssubset_of_ne_of_subset πŸ“–β€”β€”β€”β€”ssubset_of_subset_of_ne
ssubset_of_ssubset_of_eq πŸ“–β€”β€”β€”β€”β€”
ssubset_of_ssubset_of_subset πŸ“–β€”β€”β€”β€”HasSubset.Subset.ssubset_of_not_subset
HasSubset.Subset.trans
HasSSubset.SSubset.subset
HasSSubset.SSubset.not_subset
ssubset_of_subset_not_subset πŸ“–β€”β€”β€”β€”ssubset_iff_subset_not_subset
ssubset_of_subset_of_ne πŸ“–β€”β€”β€”β€”HasSubset.Subset.ssubset_of_not_subset
HasSubset.Subset.antisymm
ssubset_of_subset_of_ssubset πŸ“–β€”β€”β€”β€”HasSubset.Subset.ssubset_of_not_subset
HasSubset.Subset.trans
HasSSubset.SSubset.subset
HasSSubset.SSubset.not_subset
ssubset_or_eq_of_subset πŸ“–β€”β€”β€”β€”eq_or_ssubset_of_subset
ssubset_trans πŸ“–β€”β€”β€”β€”trans
subset_antisymm πŸ“–β€”β€”β€”β€”antisymm
subset_antisymm_iff πŸ“–β€”β€”β€”β€”Eq.subset
Eq.superset
HasSubset.Subset.antisymm
subset_iff_ssubset_or_eq πŸ“–β€”β€”β€”β€”HasSubset.Subset.ssubset_or_eq
subset_of_ssubset
subset_of_eq
subset_of_eq πŸ“–β€”β€”β€”β€”subset_rfl
subset_of_eq_of_subset πŸ“–β€”β€”β€”β€”β€”
subset_of_ssubset πŸ“–β€”β€”β€”β€”ssubset_iff_subset_not_subset
subset_of_subset_of_eq πŸ“–β€”β€”β€”β€”β€”
subset_refl πŸ“–β€”β€”β€”β€”refl
subset_rfl πŸ“–β€”β€”β€”β€”refl
subset_trans πŸ“–β€”β€”β€”β€”trans
superset_antisymm πŸ“–β€”β€”β€”β€”antisymm'
superset_antisymm_iff πŸ“–β€”β€”β€”β€”Eq.superset
Eq.subset
HasSubset.Subset.antisymm'
superset_of_eq πŸ“–β€”β€”β€”β€”subset_rfl
transitive_ge πŸ“–mathematicalβ€”Transitive
Preorder.toLE
β€”transitive_of_trans
instIsTransGe
transitive_gt πŸ“–mathematicalβ€”Transitive
Preorder.toLT
β€”transitive_of_trans
instIsTransGt
transitive_le πŸ“–mathematicalβ€”Transitive
Preorder.toLE
β€”transitive_of_trans
instIsTransLe
transitive_lt πŸ“–mathematicalβ€”Transitive
Preorder.toLT
β€”transitive_of_trans
instIsTransLt
wellFoundedGT_dual_iff πŸ“–mathematicalβ€”WellFoundedGT
OrderDual
OrderDual.instLT
WellFoundedLT
β€”IsWellFounded.wf
wellFoundedLT_dual_iff πŸ“–mathematicalβ€”WellFoundedLT
OrderDual
OrderDual.instLT
WellFoundedGT
β€”IsWellFounded.wf
wellFounded_gt πŸ“–β€”β€”β€”β€”IsWellFounded.wf
wellFounded_lt πŸ“–β€”β€”β€”β€”IsWellFounded.wf

---

← Back to Index