GaloisConnection 📖 | MathDef | 120 mathmath: NonUnitalAlgebra.gc, Set.preimage_kernImage, Subgroup.gc_map_comap, Nat.galoisConnection_mul_div, FirstOrder.Language.Substructure.gc_map_comap, FloorDiv.floorDiv_gc, ProjectiveSpectrum.gc_homogeneousIdeal, ofAddUnits_addUnits_gc, ClosedSubmodule.orthogonal_gc, ENat.gc_toENNReal_floor, AlgebraicGeometry.Scheme.IdealSheafData.gc, PrimeSpectrum.gc, LieIdeal.gc_map_comap, Subsemiring.gc_map_comap, Filter.bind_smallSets_gc, CategoryTheory.Localization.LeftBousfield.galoisConnection, TopologicalSpace.Closeds.gc, gc_upperPolar_lowerPolar, Sublattice.gc_map_comap, gc_upperBounds_lowerBounds, SetRel.image_core_gc, gc_floorDiv_mul, NonUnitalSubsemiring.gc_map_comap, LowerAdjoint.gc, OrderIso.to_galoisConnection, FloorRing.gc_ceil_coe, fixingAddSubmonoid_fixedPoints_gc, Subsemigroup.gc_map_comap, CategoryTheory.Adjunction.gc, Ideal.homogeneousHull.gc, TopologicalSpace.Opens.gc, Finset.gc_map_inr_toRight, Subalgebra.gc_map_comap, AddSubmonoid.gc_map_comap, NonUnitalStarAlgebra.gc, ProjectiveSpectrum.gc_set, Filter.gc_comap_kernMap, Submodule.orthogonal_gc, Subfield.gc_map_comap, CategoryTheory.ObjectProperty.galoisConnection_isColocal, StarSubalgebra.gc_map_comap, CategoryTheory.MorphismProperty.gc_llp_rlp, Nat.gc_count_nth, Set.image_preimage, LowerAdjoint.gc', ENat.gc_ceil_toENNReal, Int.gc_coe_floor, gc_sdiff_sup, gc_mul_ceilDiv, Nat.gc_ceil_coe, ofUnits_units_gc, gc_Ici_sInf, LinearMap.polar_gc, FloorSemiring.gc_ceil, Cardinal.toENatAux_gc, NonUnitalSubalgebra.gc_map_comap, Order.PFilter.sInf_gc, GaloisConnection.monotone_intro, gc_nhdsKer_interior, Subring.gc_map_comap, gc_upperClosure_coe, IntermediateField.gc_map_comap, ClosedSubmodule.gc_map_comap, Submodule.dualAnnihilator_gc, Submodule.gc_map_comap, AddSubgroup.gc_map_comap, MeasurableSpace.gc_comap_map, Cardinal.gc_ord_card, ProjectiveSpectrum.gc_ideal, CeilDiv.ceilDiv_gc, GaloisCoinsertion.gc, ContinuousMap.ideal_gc, AffineSubspace.gc_map_comap, PrimeSpectrum.gc_set, StarAlgebra.gc, gc_inf_himp, NonUnitalStarSubalgebra.gc_map_comap, GaloisConnection.id, gc_sSup_Iic, Submodule.torsion_gc, LieSubmodule.gc_map_comap, fixingSubmonoid_fixedPoints_gc, Submonoid.gc_map_comap, CategoryTheory.Sieve.galoisConnection, CategoryTheory.Sieve.functor_galoisConnection, Cardinal.enat_gc, MvPolynomial.zeroLocus_vanishingIdeal_galoisConnection, TopologicalSpace.gc_generateFrom, SetRel.gc_leftDual_rightDual, fixingAddSubgroup_fixedPoints_gc, Int.gc_ceil_coe, TwoSidedIdeal.gc, fixingSubgroup_fixedPoints_gc, gc_nhds, FloorRing.gc_coe_floor, gc_floorDiv_smul, ConvexCone.gc_hull_coe, gc_smul_ceilDiv, NonUnitalSubring.gc_map_comap, Filter.gc_map_comap, Order.gc_pred_succ, IntermediateField.gc, LieSubmodule.gc_lcs_ucs, CategoryTheory.ObjectProperty.galoisConnection_isLocal, BooleanSubalgebra.gc_map_comap, gc_lowerClosure_coe, UniformFun.gc, Set.sUnion_powerset_gc, CategoryTheory.Subgroupoid.galoisConnection_map_comap, Finset.gc_map_inl_toLeft, PrimitiveSpectrum.gc, AlgebraicGeometry.Scheme.IdealSheafData.map_gc, Ideal.gc_map_comap, Algebra.gc, gc_coinduced_induced, LieSubalgebra.gc_map_comap, AddSubsemigroup.gc_map_comap, Ideal.homogeneousCore.gc, GaloisInsertion.gc, LieSubmodule.gc_top_lie_normalizer
|