Documentation Verification Report

SaddlePoint

📁 Source: Mathlib/Order/SaddlePoint.lean

Statistics

MetricCount
DefinitionsIsSaddlePointOn
1
Theoremsswap_left, swap_right, iSup₂_iInf₂_le_iInf₂_iSup₂, isSaddlePointOn_iff, isSaddlePointOn_iff', isSaddlePointOn_value
6
Total7

IsSaddlePointOn

Theorems

NameKindAssumesProvesValidatesDepends On
swap_left 📖—Set
Set.instMembership
IsSaddlePointOn
——le_trans
swap_right 📖—Set
Set.instMembership
IsSaddlePointOn
——swap_left

(root)

Definitions

NameCategoryTheorems
IsSaddlePointOn 📖MathDef
2 mathmath: isSaddlePointOn_iff', isSaddlePointOn_iff

Theorems

NameKindAssumesProvesValidatesDepends On
iSup₂_iInf₂_le_iInf₂_iSup₂ 📖mathematical—Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Set
Set.instMembership
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
—iSup₂_le_iff
le_iInf₂_iff
iInf₂_le_of_le
le_iSup₂_of_le
le_refl
isSaddlePointOn_iff 📖mathematicalSet
Set.instMembership
IsSaddlePointOn
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
—le_antisymm
le_iSup₂
iInf₂_le
isSaddlePointOn_iff' 📖mathematicalSet
Set.instMembership
IsSaddlePointOn
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
Preorder.toLE
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
—isSaddlePointOn_iff
le_trans
le_of_eq
le_antisymm
iInf₂_le
le_iSup₂
isSaddlePointOn_value 📖mathematicalSet
Set.instMembership
IsSaddlePointOn
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
—le_antisymm
isSaddlePointOn_iff
le_trans
iInf₂_le
le_rfl
iInf₂_mono
le_iSup₂
iSup₂_mono

---

← Back to Index