Documentation Verification Report

ScottContinuity

πŸ“ Source: Mathlib/Order/ScottContinuity.lean

Statistics

MetricCount
DefinitionsScottContinuous, ScottContinuousOn
2
Theoremscomp, const, fst, fun_comp, fun_const, fun_id, id, monotone, prodMk, scottContinuousOn, snd, supβ‚‚, comp, const, fst, fun_comp, fun_const, fun_id, fun_image_comp, id, image_comp, mono, monotone, prodMk, snd, supβ‚‚, scottContinuousOn_univ
27
Total29

ScottContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”ScottContinuousβ€”β€”scottContinuousOn_univ
ScottContinuousOn.comp
const πŸ“–mathematicalβ€”ScottContinuousβ€”β€”
fst πŸ“–mathematicalβ€”ScottContinuous
Prod.instPreorder
β€”β€”
fun_comp πŸ“–β€”ScottContinuousβ€”β€”comp
fun_const πŸ“–mathematicalβ€”ScottContinuousβ€”const
fun_id πŸ“–mathematicalβ€”ScottContinuousβ€”id
id πŸ“–mathematicalβ€”ScottContinuousβ€”Set.image_congr
Set.image_id'
monotone πŸ“–mathematicalScottContinuousMonotoneβ€”ScottContinuousOn.monotone
Set.mem_univ
scottContinuousOn
prodMk πŸ“–mathematicalScottContinuousProd.instPreorderβ€”scottContinuousOn_univ
ScottContinuousOn.prodMk
scottContinuousOn πŸ“–mathematicalScottContinuousScottContinuousOnβ€”β€”
snd πŸ“–mathematicalβ€”ScottContinuous
Prod.instPreorder
β€”β€”
supβ‚‚ πŸ“–mathematicalβ€”ScottContinuous
Prod.instPreorder
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMax
β€”sup_le_sup
sup_le_iff

ScottContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
Set.MapsTo
Set.image
ScottContinuousOn
β€”β€”monotone
Set.image_comp
const πŸ“–mathematicalβ€”ScottContinuousOnβ€”Set.image_congr
fst πŸ“–mathematicalβ€”ScottContinuousOn
Prod.instPreorder
β€”β€”
fun_comp πŸ“–β€”Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
Set.MapsTo
Set.image
ScottContinuousOn
β€”β€”comp
fun_const πŸ“–mathematicalβ€”ScottContinuousOnβ€”const
fun_id πŸ“–mathematicalβ€”ScottContinuousOnβ€”id
fun_image_comp πŸ“–β€”Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
ScottContinuousOn
Set.image
β€”β€”image_comp
id πŸ“–mathematicalβ€”ScottContinuousOnβ€”Set.image_congr
Set.image_id'
image_comp πŸ“–β€”Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
ScottContinuousOn
Set.image
β€”β€”comp
Set.mapsTo_image
mono πŸ“–β€”Set
Set.instHasSubset
ScottContinuousOn
β€”β€”β€”
monotone πŸ“–mathematicalSet
Set.instMembership
Set.instInsert
Set.instSingletonSet
ScottContinuousOn
Monotoneβ€”Set.insert_nonempty
directedOn_pair
le_refl
IsLUB.eq_1
upperBounds_insert
upperBounds_singleton
Set.inter_eq_self_of_subset_right
Set.Ici_subset_Ici
isLeast_Ici
Set.mem_image_of_mem
Set.mem_insert
prodMk πŸ“–mathematicalSet
Set.instMembership
Set.instInsert
Set.instSingletonSet
ScottContinuousOn
Prod.instPreorderβ€”IsLUB.eq_1
IsLeast.eq_1
upperBounds.eq_1
monotone
isLUB_le_iff
snd πŸ“–mathematicalβ€”ScottContinuousOn
Prod.instPreorder
β€”β€”
supβ‚‚ πŸ“–mathematicalβ€”ScottContinuousOn
Prod.instPreorder
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMax
β€”ScottContinuous.scottContinuousOn
ScottContinuous.supβ‚‚

(root)

Definitions

NameCategoryTheorems
ScottContinuous πŸ“–MathDef
15 mathmath: ScottContinuous.fun_id, scottContinuous_inf_right, Topology.IsScott.isOpen_iff_scottContinuous_mem, scottContinuousOn_univ, ScottContinuous.infβ‚‚, ScottContinuous.fst, ScottContinuous.const, scottContinuous_inf_left, CompletePartialOrder.scottContinuous, ScottContinuous.supβ‚‚, ScottContinuous.id, ScottContinuous.of_map_sSup, scottContinuous_iff_map_sSup, ScottContinuous.snd, ScottContinuous.fun_const
ScottContinuousOn πŸ“–MathDef
10 mathmath: ScottContinuousOn.const, ScottContinuousOn.snd, scottContinuousOn_univ, ScottContinuousOn.supβ‚‚, ScottContinuousOn.fst, ScottContinuousOn.fun_const, ScottContinuousOn.id, ScottContinuousOn.fun_id, Topology.IsScott.scottContinuousOn_iff_continuous, ScottContinuous.scottContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
scottContinuousOn_univ πŸ“–mathematicalβ€”ScottContinuousOn
Set.univ
Set
ScottContinuous
β€”β€”

---

← Back to Index