Documentation Verification Report

SemiconjSup

📁 Source: Mathlib/Order/SemiconjSup.lean

Statistics

MetricCount
DefinitionsIsOrderRightAdjoint
1
Theoremssymm_adjoint, csSup_div_semiconj, sSup_div_semiconj, semiconj_of_isLUB, comp_orderIso, orderIso_comp, right_mono, unique, isOrderRightAdjoint_csSup, isOrderRightAdjoint_sSup
10
Total11

Function

Theorems

NameKindAssumesProvesValidatesDepends On
csSup_div_semiconj 📖mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
DFunLike.coe
OrderIso
instFunLikeOrderIso
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
RelIso.instGroup
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Semiconj
iSup
ConditionallyCompletePartialOrderSup.toSupSet
semiconj_of_isLUB
isLUB_csSup
Set.range_nonempty
One.instNonempty
sSup_div_semiconj 📖mathematicalSemiconj
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
instFunLikeOrderIso
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
RelIso.instGroup
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
semiconj_of_isLUB
isLUB_iSup
semiconj_of_isLUB 📖mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
Set.range
DFunLike.coe
OrderIso
instFunLikeOrderIso
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
RelIso.instGroup
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
SemiconjIsLUB.unique
OrderIso.leftOrdContinuous
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
mul_inv_rev
RelIso.apply_inv_self
Surjective.range_comp
Equiv.surjective
Set.range_comp

Function.Semiconj

Theorems

NameKindAssumesProvesValidatesDepends On
symm_adjoint 📖Function.Semiconj
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
instFunLikeOrderIso
OrderEmbedding
instFunLikeOrderEmbedding
IsOrderRightAdjoint
IsLUB.unique
Function.Surjective.image_preimage
OrderIso.surjective
Set.preimage_setOf_eq
eq
OrderEmbedding.le_iff_le
OrderIso.leftOrdContinuous

IsOrderRightAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
comp_orderIso 📖mathematicalIsOrderRightAdjointDFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderIso.symm
OrderIso.isLUB_preimage
OrderIso.apply_symm_apply
orderIso_comp 📖mathematicalIsOrderRightAdjointDFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderIso.symm
OrderIso.le_symm_apply
right_mono 📖mathematicalIsOrderRightAdjointMonotoneIsLUB.mono
le_trans
unique 📖IsOrderRightAdjoint
PartialOrder.toPreorder
IsLUB.unique

(root)

Definitions

NameCategoryTheorems
IsOrderRightAdjoint 📖MathDef
2 mathmath: isOrderRightAdjoint_csSup, isOrderRightAdjoint_sSup

Theorems

NameKindAssumesProvesValidatesDepends On
isOrderRightAdjoint_csSup 📖mathematicalPreorder.toLE
BddAbove
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
setOf
IsOrderRightAdjoint
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
isLUB_csSup
isOrderRightAdjoint_sSup 📖mathematicalIsOrderRightAdjoint
PartialOrder.toPreorder
CompleteSemilatticeSup.toPartialOrder
SupSet.sSup
CompleteSemilatticeSup.toSupSet
setOf
Preorder.toLE
isLUB_sSup

---

← Back to Index