Documentation Verification Report

Sublocale

πŸ“ Source: Mathlib/Order/Sublocale.lean

Statistics

MetricCount
DefinitionstoSublocale, Sublocale, carrier, instCompleteLattice, instFrame, instHImp, instHeytingAlgebra, instInfSet, instOrderTop, instSemilatticeInf, giRestrict, instCoframe, instCoframeMinimalAxioms, instCompleteLattice, instPartialOrder, instSetLike, restrict, toNucleus, nucleusIsoSublocale
19
Theoremscoe_toSublocale, mem_toSublocale, restrict_toSublocale, toSublocale_le_toSublocale, coe_himp, coe_iInf, coe_inf, coe_sInf, ext, ext_iff, himp_mem, himp_mem', iInf_mem, infClosed, inf_mem, mem_carrier, mem_mk, mk_le_mk, range_toNucleus, restrict_of_mem, sInf_mem, sInf_mem', toNucleus_apply, toNucleus_le_toNucleus, top_mem, eq_toSublocale, symm_eq_toNucleus
27
Total46

Nucleus

Definitions

NameCategoryTheorems
toSublocale πŸ“–CompOp
5 mathmath: mem_toSublocale, coe_toSublocale, toSublocale_le_toSublocale, nucleusIsoSublocale.eq_toSublocale, restrict_toSublocale

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toSublocale πŸ“–mathematicalβ€”SetLike.coe
Sublocale
Sublocale.instSetLike
toSublocale
Set.range
DFunLike.coe
Nucleus
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
instFunLike
β€”β€”
mem_toSublocale πŸ“–mathematicalβ€”Sublocale
SetLike.instMembership
Sublocale.instSetLike
toSublocale
DFunLike.coe
Nucleus
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
instFunLike
β€”β€”
restrict_toSublocale πŸ“–mathematicalβ€”DFunLike.coe
FrameHom
Sublocale
SetLike.instMembership
Sublocale.instSetLike
toSublocale
Order.Frame.toCompleteLattice
Sublocale.carrier.instCompleteLattice
FrameHom.instFunLike
Sublocale.restrict
Nucleus
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instFunLike
β€”sInf_image
le_antisymm_iff
iInfβ‚‚_le_of_le
le_apply
le_rfl
idempotent
monotone
toSublocale_le_toSublocale πŸ“–mathematicalβ€”Sublocale
Preorder.toLE
PartialOrder.toPreorder
Sublocale.instPartialOrder
toSublocale
Nucleus
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
instPartialOrder
β€”instIsConcreteLE

Sublocale

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
1 mathmath: mem_carrier
giRestrict πŸ“–CompOpβ€”
instCoframe πŸ“–CompOpβ€”
instCoframeMinimalAxioms πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
5 mathmath: Nucleus.toSublocale_le_toSublocale, toNucleus_le_toNucleus, mk_le_mk, nucleusIsoSublocale.eq_toSublocale, nucleusIsoSublocale.symm_eq_toNucleus
instSetLike πŸ“–CompOp
14 mathmath: mem_carrier, coe_iInf, top_mem, Nucleus.mem_toSublocale, coe_inf, Nucleus.coe_toSublocale, mem_mk, coe_sInf, coe_himp, ext_iff, Nucleus.restrict_toSublocale, infClosed, range_toNucleus, toNucleus_apply
restrict πŸ“–CompOp
3 mathmath: Nucleus.restrict_toSublocale, restrict_of_mem, toNucleus_apply
toNucleus πŸ“–CompOp
4 mathmath: toNucleus_le_toNucleus, nucleusIsoSublocale.symm_eq_toNucleus, range_toNucleus, toNucleus_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_himp πŸ“–mathematicalβ€”Sublocale
SetLike.instMembership
instSetLike
HImp.himp
carrier.instHImp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
Order.Frame.toHeytingAlgebra
β€”β€”
coe_iInf πŸ“–mathematicalβ€”Sublocale
SetLike.instMembership
instSetLike
iInf
carrier.instInfSet
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
β€”β€”
coe_inf πŸ“–mathematicalβ€”Sublocale
SetLike.instMembership
instSetLike
SemilatticeInf.toMin
carrier.instSemilatticeInf
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
β€”β€”
coe_sInf πŸ“–mathematicalβ€”Sublocale
SetLike.instMembership
instSetLike
InfSet.sInf
carrier.instInfSet
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
Set.image
β€”β€”
ext πŸ“–β€”Sublocale
SetLike.instMembership
instSetLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”Sublocale
SetLike.instMembership
instSetLike
β€”ext
himp_mem πŸ“–mathematicalSublocale
SetLike.instMembership
instSetLike
HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
Order.Frame.toHeytingAlgebra
β€”himp_mem'
himp_mem' πŸ“–mathematicalSet
Set.instMembership
carrier
HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
Order.Frame.toHeytingAlgebra
β€”β€”
iInf_mem πŸ“–mathematicalSublocale
SetLike.instMembership
instSetLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
β€”sInf_mem
infClosed πŸ“–mathematicalβ€”InfClosed
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
SetLike.coe
Sublocale
instSetLike
β€”sInf_pair
sInf_mem
Set.pair_subset
inf_mem πŸ“–mathematicalSublocale
SetLike.instMembership
instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
β€”infClosed
mem_carrier πŸ“–mathematicalβ€”Set
Set.instMembership
carrier
Sublocale
SetLike.instMembership
instSetLike
β€”β€”
mem_mk πŸ“–mathematicalSet
Set.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
Order.Frame.toHeytingAlgebra
Sublocale
SetLike.instMembership
instSetLike
β€”β€”
mk_le_mk πŸ“–mathematicalSet
Set.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
Order.Frame.toHeytingAlgebra
Sublocale
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set.instHasSubset
β€”β€”
range_toNucleus πŸ“–mathematicalβ€”Set.range
DFunLike.coe
Nucleus
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
Nucleus.instFunLike
toNucleus
SetLike.coe
Sublocale
instSetLike
β€”Set.ext
restrict_of_mem
restrict_of_mem πŸ“–mathematicalSublocale
SetLike.instMembership
instSetLike
DFunLike.coe
FrameHom
Order.Frame.toCompleteLattice
carrier.instCompleteLattice
FrameHom.instFunLike
restrict
β€”GaloisInsertion.l_u_eq
sInf_mem πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Sublocale
instSetLike
SetLike.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
β€”sInf_mem'
sInf_mem' πŸ“–mathematicalSet
Set.instHasSubset
carrier
Set.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
β€”β€”
toNucleus_apply πŸ“–mathematicalβ€”DFunLike.coe
Nucleus
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
Nucleus.instFunLike
toNucleus
Sublocale
SetLike.instMembership
instSetLike
FrameHom
carrier.instCompleteLattice
FrameHom.instFunLike
restrict
β€”β€”
toNucleus_le_toNucleus πŸ“–mathematicalβ€”Nucleus
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
Preorder.toLE
PartialOrder.toPreorder
Nucleus.instPartialOrder
toNucleus
Sublocale
instPartialOrder
β€”range_toNucleus
instIsConcreteLE
top_mem πŸ“–mathematicalβ€”Sublocale
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Order.Frame.toCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”sInf_empty
sInf_mem
Set.empty_subset

Sublocale.carrier

Definitions

NameCategoryTheorems
instCompleteLattice πŸ“–CompOp
3 mathmath: Nucleus.restrict_toSublocale, Sublocale.restrict_of_mem, Sublocale.toNucleus_apply
instFrame πŸ“–CompOpβ€”
instHImp πŸ“–CompOp
1 mathmath: Sublocale.coe_himp
instHeytingAlgebra πŸ“–CompOpβ€”
instInfSet πŸ“–CompOp
2 mathmath: Sublocale.coe_iInf, Sublocale.coe_sInf
instOrderTop πŸ“–CompOpβ€”
instSemilatticeInf πŸ“–CompOp
1 mathmath: Sublocale.coe_inf

(root)

Definitions

NameCategoryTheorems
Sublocale πŸ“–CompData
19 mathmath: Sublocale.mem_carrier, Sublocale.coe_iInf, Sublocale.top_mem, Nucleus.mem_toSublocale, Sublocale.coe_inf, Nucleus.coe_toSublocale, Nucleus.toSublocale_le_toSublocale, Sublocale.mem_mk, Sublocale.coe_sInf, Sublocale.coe_himp, Sublocale.ext_iff, Sublocale.toNucleus_le_toNucleus, Sublocale.mk_le_mk, nucleusIsoSublocale.eq_toSublocale, nucleusIsoSublocale.symm_eq_toNucleus, Nucleus.restrict_toSublocale, Sublocale.infClosed, Sublocale.range_toNucleus, Sublocale.toNucleus_apply
nucleusIsoSublocale πŸ“–CompOp
2 mathmath: nucleusIsoSublocale.eq_toSublocale, nucleusIsoSublocale.symm_eq_toNucleus

nucleusIsoSublocale

Theorems

NameKindAssumesProvesValidatesDepends On
eq_toSublocale πŸ“–mathematicalβ€”Nucleus.toSublocale
DFunLike.coe
OrderIso
OrderDual
Nucleus
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
Sublocale
OrderDual.instLE
Preorder.toLE
PartialOrder.toPreorder
Nucleus.instPartialOrder
Sublocale.instPartialOrder
instFunLikeOrderIso
nucleusIsoSublocale
β€”β€”
symm_eq_toNucleus πŸ“–mathematicalβ€”Sublocale.toNucleus
DFunLike.coe
OrderIso
Sublocale
OrderDual
Nucleus
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
Preorder.toLE
PartialOrder.toPreorder
Sublocale.instPartialOrder
OrderDual.instLE
Nucleus.instPartialOrder
instFunLikeOrderIso
OrderIso.symm
nucleusIsoSublocale
β€”β€”

---

← Back to Index