Archimedean
π Source: Mathlib/Order/SuccPred/Archimedean.lean
Statistics
BddAbove
Theorems
BddBelow
Theorems
IsPredArchimedean
Definitions
| Name | Category | Theorems |
|---|---|---|
linearOrder π | CompOp | β |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
exists_pred_iterate_of_le π | mathematical | Preorder.toLE | Nat.iterateOrder.pred | β | β |
of_orderIso π | mathematical | β | IsPredArchimedeanPartialOrder.toPreorder | β | OrderIso.apply_eq_iff_eqEquivLike.apply_inv_applyFunction.iterate_succ'OrderIso.map_predexists_pred_iterate_of_lemap_inv_le_map_inv_iffOrderIso.instOrderIsoClass |
IsSuccArchimedean
Definitions
| Name | Category | Theorems |
|---|---|---|
linearOrder π | CompOp | β |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
exists_succ_iterate_of_le π | mathematical | Preorder.toLE | Nat.iterateOrder.succ | β | β |
of_orderIso π | mathematical | β | IsSuccArchimedeanPartialOrder.toPreorder | β | OrderIso.apply_eq_iff_eqEquivLike.apply_inv_applyFunction.iterate_succ'OrderIso.map_succexists_succ_iterate_of_lemap_inv_le_map_inv_iffOrderIso.instOrderIsoClass |
LE.le
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
exists_pred_iterate π | mathematical | Preorder.toLE | Nat.iterateOrder.pred | β | IsPredArchimedean.exists_pred_iterate_of_le |
exists_succ_iterate π | mathematical | Preorder.toLE | Nat.iterateOrder.succ | β | IsSuccArchimedean.exists_succ_iterate_of_le |
Pred
Theorems
Set.OrdConnected
Theorems
StrictAnti
Theorems
StrictMono
Theorems
Succ
Theorems
SuccOrder
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
forall_ne_bot_iff π | mathematical | β | succPartialOrder.toPreorder | β | Order.succ_ne_botIsSuccArchimedean.exists_succ_iterate_of_lebot_leMathlib.Tactic.Contrapose.contraposeβFunction.iterate_succ' |
WellFoundedGT
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
toIsSuccArchimedean π | mathematical | β | IsSuccArchimedeanPartialOrder.toPreorder | β | WellFoundedLT.toIsPredArchimedeaninstWellFoundedLTOrderDualOfWellFoundedGTIsPredArchimedean.exists_pred_iterate_of_le |
WellFoundedLT
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
toIsPredArchimedean π | mathematical | β | IsPredArchimedeanPartialOrder.toPreorder | β | IsWellFounded.wfeq_or_lt_of_leOrder.pred_leIsMin.not_ltOrder.min_of_le_predEq.geOrder.le_pred_of_ltFunction.iterate_add_applyFunction.iterate_one |
(root)
Definitions
Theorems
---