Documentation Verification Report

Archimedean

πŸ“ Source: Mathlib/Order/SuccPred/Archimedean.lean

Statistics

MetricCount
DefinitionsIsPredArchimedean, linearOrder, IsSuccArchimedean, linearOrder
4
Theoremsexists_isGreatest_of_nonempty, exists_isLeast_of_nonempty, exists_pred_iterate_of_le, of_orderIso, exists_succ_iterate_of_le, of_orderIso, exists_pred_iterate, exists_succ_iterate, rec, rec_iff, rec_linear, rec_top, isPredArchimedean, isSuccArchimedean, not_bddBelow_range_of_isPredArchimedean, not_bddBelow_range_of_isSuccArchimedean, not_bddAbove_range_of_isSuccArchimedean, not_bddBelow_range_of_isPredArchimedean, rec, rec_bot, rec_iff, rec_linear, forall_ne_bot_iff, toIsSuccArchimedean, toIsPredArchimedean, antitoneOn_of_le_pred, antitoneOn_of_succ_le, antitone_of_le_pred, antitone_of_succ_le, exists_pred_iterate_iff_le, exists_pred_iterate_or, exists_succ_iterate_iff_le, exists_succ_iterate_or, instIsPredArchimedeanOrderDual, instIsSuccArchimedeanOrderDual, le_total_of_codirected, le_total_of_directed, lt_or_le_of_codirected, lt_or_le_of_directed, monotoneOn_of_le_succ, monotoneOn_of_pred_le, monotone_of_le_succ, monotone_of_pred_le, pred_max, pred_min, strictAntiOn_of_lt_pred, strictAntiOn_of_succ_lt, strictAnti_of_lt_pred, strictAnti_of_succ_lt, strictMonoOn_of_lt_succ, strictMonoOn_of_pred_lt, strictMono_of_lt_succ, strictMono_of_pred_lt, succ_max, succ_min
55
Total59

BddAbove

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isGreatest_of_nonempty πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
IsGreatestβ€”instIsEmptyFalse
mem_upperBounds

BddBelow

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isLeast_of_nonempty πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
IsLeastβ€”BddAbove.exists_isGreatest_of_nonempty
instIsSuccArchimedeanOrderDual
dual

IsPredArchimedean

Definitions

NameCategoryTheorems
linearOrder πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_pred_iterate_of_le πŸ“–mathematicalPreorder.toLENat.iterate
Order.pred
β€”β€”
of_orderIso πŸ“–mathematicalβ€”IsPredArchimedean
PartialOrder.toPreorder
β€”OrderIso.apply_eq_iff_eq
EquivLike.apply_inv_apply
Function.iterate_succ'
OrderIso.map_pred
exists_pred_iterate_of_le
map_inv_le_map_inv_iff
OrderIso.instOrderIsoClass

IsSuccArchimedean

Definitions

NameCategoryTheorems
linearOrder πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_succ_iterate_of_le πŸ“–mathematicalPreorder.toLENat.iterate
Order.succ
β€”β€”
of_orderIso πŸ“–mathematicalβ€”IsSuccArchimedean
PartialOrder.toPreorder
β€”OrderIso.apply_eq_iff_eq
EquivLike.apply_inv_apply
Function.iterate_succ'
OrderIso.map_succ
exists_succ_iterate_of_le
map_inv_le_map_inv_iff
OrderIso.instOrderIsoClass

LE.le

Theorems

NameKindAssumesProvesValidatesDepends On
exists_pred_iterate πŸ“–mathematicalPreorder.toLENat.iterate
Order.pred
β€”IsPredArchimedean.exists_pred_iterate_of_le
exists_succ_iterate πŸ“–mathematicalPreorder.toLENat.iterate
Order.succ
β€”IsSuccArchimedean.exists_succ_iterate_of_le

Pred

Theorems

NameKindAssumesProvesValidatesDepends On
rec πŸ“–β€”le_rfl
Order.pred
LE.le.trans
Order.pred_le
Preorder.toLE
β€”β€”le_rfl
LE.le.trans
Order.pred_le
instIsSuccArchimedeanOrderDual
rec_iff πŸ“–β€”Order.pred
Preorder.toLE
β€”β€”Succ.rec_iff
instIsSuccArchimedeanOrderDual
rec_linear πŸ“–β€”Order.pred
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”le_total
rec_iff
rec_top πŸ“–β€”Top.top
OrderTop.toTop
Preorder.toLE
Order.pred
β€”β€”le_top

Set.OrdConnected

Theorems

NameKindAssumesProvesValidatesDepends On
isPredArchimedean πŸ“–mathematicalβ€”IsPredArchimedean
Set.Elem
Subtype.preorder
PartialOrder.toPreorder
Set
Set.instMembership
predOrder
β€”LE.le.exists_pred_iterate
Order.pred_iterate_le
Function.iterate_fixed
IsMin.eq_of_le
isSuccArchimedean πŸ“–mathematicalβ€”IsSuccArchimedean
Set.Elem
Subtype.preorder
PartialOrder.toPreorder
Set
Set.instMembership
succOrder
β€”instIsSuccArchimedeanOrderDual
Set.dual_ordConnected
isPredArchimedean
instIsPredArchimedeanOrderDual

StrictAnti

Theorems

NameKindAssumesProvesValidatesDepends On
not_bddBelow_range_of_isPredArchimedean πŸ“–mathematicalStrictAntiBddBelow
Preorder.toLE
Set.range
β€”StrictMono.not_bddAbove_range_of_isSuccArchimedean
instIsSuccArchimedeanOrderDual
dual_right
not_bddBelow_range_of_isSuccArchimedean πŸ“–mathematicalStrictAntiBddAbove
Preorder.toLE
Set.range
β€”StrictMono.not_bddBelow_range_of_isPredArchimedean
instIsPredArchimedeanOrderDual
dual_right

StrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
not_bddAbove_range_of_isSuccArchimedean πŸ“–mathematicalStrictMonoBddAbove
Preorder.toLE
Set.range
β€”Set.mem_range_self
NoMaxOrder.exists_gt
LE.le.trans_lt
Order.succ_le_of_lt
LT.lt.not_ge
not_bddBelow_range_of_isPredArchimedean πŸ“–mathematicalStrictMonoBddBelow
Preorder.toLE
Set.range
β€”not_bddAbove_range_of_isSuccArchimedean
OrderDual.instNonempty
OrderDual.noMaxOrder
instIsSuccArchimedeanOrderDual
dual

Succ

Theorems

NameKindAssumesProvesValidatesDepends On
rec πŸ“–β€”le_rfl
Order.succ
LE.le.trans
Order.le_succ
Preorder.toLE
β€”β€”le_rfl
LE.le.trans
Order.le_succ
LE.le.exists_succ_iterate
Function.iterate_succ_apply'
Function.id_le_iterate_of_id_le
rec_bot πŸ“–β€”Bot.bot
OrderBot.toBot
Preorder.toLE
Order.succ
β€”β€”bot_le
rec_iff πŸ“–β€”Order.succ
Preorder.toLE
β€”β€”LE.le.exists_succ_iterate
rec_linear πŸ“–β€”Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”le_total
rec_iff

SuccOrder

Theorems

NameKindAssumesProvesValidatesDepends On
forall_ne_bot_iff πŸ“–mathematicalβ€”succ
PartialOrder.toPreorder
β€”Order.succ_ne_bot
IsSuccArchimedean.exists_succ_iterate_of_le
bot_le
Mathlib.Tactic.Contrapose.contraposeβ‚„
Function.iterate_succ'

WellFoundedGT

Theorems

NameKindAssumesProvesValidatesDepends On
toIsSuccArchimedean πŸ“–mathematicalβ€”IsSuccArchimedean
PartialOrder.toPreorder
β€”WellFoundedLT.toIsPredArchimedean
instWellFoundedLTOrderDualOfWellFoundedGT
IsPredArchimedean.exists_pred_iterate_of_le

WellFoundedLT

Theorems

NameKindAssumesProvesValidatesDepends On
toIsPredArchimedean πŸ“–mathematicalβ€”IsPredArchimedean
PartialOrder.toPreorder
β€”IsWellFounded.wf
eq_or_lt_of_le
Order.pred_le
IsMin.not_lt
Order.min_of_le_pred
Eq.ge
Order.le_pred_of_lt
Function.iterate_add_apply
Function.iterate_one

(root)

Definitions

NameCategoryTheorems
IsPredArchimedean πŸ“–CompData
12 mathmath: LinearOrder.isSuccArchimedean_iff_isPredArchimedean, WellFoundedLT.toIsPredArchimedean, LinearLocallyFiniteOrder.instIsPredArchimedeanOfLocallyFiniteOrder, instIsPredArchimedeanOrderDual, Int.instIsPredArchimedean, instIsPredArchimedeanMultiplicative, RootedTree.isPredArchimedean, instIsPredArchimedeanAdditive, IsPredArchimedean.of_orderIso, Set.OrdConnected.isPredArchimedean, LinearOrder.isPredArchimedean_of_isSuccArchimedean, Nat.instIsPredArchimedean
IsSuccArchimedean πŸ“–CompData
11 mathmath: LinearOrder.isSuccArchimedean_iff_isPredArchimedean, Int.instIsSuccArchimedean, instIsSuccArchimedeanOrderDual, instIsSuccArchimedeanAdditive, Nat.instIsSuccArchimedean, Set.OrdConnected.isSuccArchimedean, LinearLocallyFiniteOrder.instIsSuccArchimedeanOfLocallyFiniteOrder, LinearOrder.isSuccArchimedean_of_isPredArchimedean, IsSuccArchimedean.of_orderIso, WellFoundedGT.toIsSuccArchimedean, instIsSuccArchimedeanMultiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
antitoneOn_of_le_pred πŸ“–mathematicalPreorder.toLE
Order.pred
PartialOrder.toPreorder
AntitoneOnβ€”monotoneOn_of_pred_le
antitoneOn_of_succ_le πŸ“–mathematicalPreorder.toLE
Order.succ
PartialOrder.toPreorder
AntitoneOnβ€”monotoneOn_of_le_succ
antitone_of_le_pred πŸ“–mathematicalPreorder.toLE
Order.pred
PartialOrder.toPreorder
Antitoneβ€”antitoneOn_of_le_pred
Set.ordConnected_univ
antitone_of_succ_le πŸ“–mathematicalPreorder.toLE
Order.succ
PartialOrder.toPreorder
Antitoneβ€”antitoneOn_of_succ_le
Set.ordConnected_univ
exists_pred_iterate_iff_le πŸ“–mathematicalβ€”Nat.iterate
Order.pred
Preorder.toLE
β€”exists_succ_iterate_iff_le
instIsSuccArchimedeanOrderDual
exists_pred_iterate_or πŸ“–mathematicalβ€”Nat.iterate
Order.pred
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”IsPredArchimedean.exists_pred_iterate_of_le
le_total
exists_succ_iterate_iff_le πŸ“–mathematicalβ€”Nat.iterate
Order.succ
Preorder.toLE
β€”Function.id_le_iterate_of_id_le
Order.le_succ
IsSuccArchimedean.exists_succ_iterate_of_le
exists_succ_iterate_or πŸ“–mathematicalβ€”Nat.iterate
Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”IsSuccArchimedean.exists_succ_iterate_of_le
le_total
instIsPredArchimedeanOrderDual πŸ“–mathematicalβ€”IsPredArchimedean
OrderDual
OrderDual.instPreorder
instPredOrderOrderDualOfSuccOrder
β€”IsSuccArchimedean.exists_succ_iterate_of_le
LE.le.ofDual
instIsSuccArchimedeanOrderDual πŸ“–mathematicalβ€”IsSuccArchimedean
OrderDual
OrderDual.instPreorder
instSuccOrderOrderDualOfPredOrder
β€”IsPredArchimedean.exists_pred_iterate_of_le
LE.le.ofDual
le_total_of_codirected πŸ“–β€”Preorder.toLEβ€”β€”LE.le.exists_succ_iterate
Function.iterate_add
Order.le_succ_iterate
le_total_of_directed πŸ“–β€”Preorder.toLEβ€”β€”le_total_of_codirected
instIsSuccArchimedeanOrderDual
lt_or_le_of_codirected πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Preorder.toLTβ€”le_total_of_codirected
lt_of_le_of_ne
ne_of_not_le
lt_or_le_of_directed πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Preorder.toLTβ€”le_total_of_directed
lt_of_le_of_ne
ne_of_not_le
monotoneOn_of_le_succ πŸ“–mathematicalPreorder.toLE
Order.succ
PartialOrder.toPreorder
MonotoneOnβ€”IsSuccArchimedean.exists_succ_iterate_of_le
Function.iterate_succ_apply'
Set.OrdConnected.out'
Order.le_succ_iterate
Order.le_succ
Order.succ_eq_iff_isMax
LE.le.trans
monotoneOn_of_pred_le πŸ“–mathematicalPreorder.toLE
Order.pred
PartialOrder.toPreorder
MonotoneOnβ€”IsPredArchimedean.exists_pred_iterate_of_le
Function.iterate_succ_apply'
Set.OrdConnected.out'
Order.pred_le
Order.pred_iterate_le
Order.pred_eq_iff_isMin
LE.le.trans'
monotone_of_le_succ πŸ“–mathematicalPreorder.toLE
Order.succ
PartialOrder.toPreorder
Monotoneβ€”monotoneOn_of_le_succ
Set.ordConnected_univ
monotone_of_pred_le πŸ“–mathematicalPreorder.toLE
Order.pred
PartialOrder.toPreorder
Monotoneβ€”monotoneOn_of_pred_le
Set.ordConnected_univ
pred_max πŸ“–mathematicalβ€”Order.pred
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”Monotone.map_max
Order.pred_mono
pred_min πŸ“–mathematicalβ€”Order.pred
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SemilatticeInf.toMin
β€”Monotone.map_min
Order.pred_mono
strictAntiOn_of_lt_pred πŸ“–mathematicalPreorder.toLT
Order.pred
PartialOrder.toPreorder
StrictAntiOnβ€”strictMonoOn_of_pred_lt
strictAntiOn_of_succ_lt πŸ“–mathematicalPreorder.toLT
Order.succ
PartialOrder.toPreorder
StrictAntiOnβ€”strictMonoOn_of_lt_succ
strictAnti_of_lt_pred πŸ“–mathematicalPreorder.toLT
Order.pred
PartialOrder.toPreorder
StrictAntiβ€”strictAntiOn_of_lt_pred
Set.ordConnected_univ
strictAnti_of_succ_lt πŸ“–mathematicalPreorder.toLT
Order.succ
PartialOrder.toPreorder
StrictAntiβ€”strictAntiOn_of_succ_lt
Set.ordConnected_univ
strictMonoOn_of_lt_succ πŸ“–mathematicalPreorder.toLT
Order.succ
PartialOrder.toPreorder
StrictMonoOnβ€”IsSuccArchimedean.exists_succ_iterate_of_le
LT.lt.le
Function.iterate_one
not_isMax_of_lt
Function.iterate_succ_apply'
Set.OrdConnected.out'
Order.le_succ_iterate
Order.le_succ
Order.succ_eq_iff_isMax
LT.lt.trans
strictMonoOn_of_pred_lt πŸ“–mathematicalPreorder.toLT
Order.pred
PartialOrder.toPreorder
StrictMonoOnβ€”IsPredArchimedean.exists_pred_iterate_of_le
LT.lt.le
Function.iterate_one
not_isMin_of_lt
Function.iterate_succ_apply'
Set.OrdConnected.out'
Order.pred_le
Order.pred_iterate_le
Order.pred_eq_iff_isMin
LT.lt.trans'
strictMono_of_lt_succ πŸ“–mathematicalPreorder.toLT
Order.succ
PartialOrder.toPreorder
StrictMonoβ€”strictMonoOn_of_lt_succ
Set.ordConnected_univ
strictMono_of_pred_lt πŸ“–mathematicalPreorder.toLT
Order.pred
PartialOrder.toPreorder
StrictMonoβ€”strictMonoOn_of_pred_lt
Set.ordConnected_univ
succ_max πŸ“–mathematicalβ€”Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”Monotone.map_max
Order.succ_mono
succ_min πŸ“–mathematicalβ€”Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SemilatticeInf.toMin
β€”Monotone.map_min
Order.succ_mono

---

← Back to Index