Documentation Verification Report

CompleteLinearOrder

📁 Source: Mathlib/Order/SuccPred/CompleteLinearOrder.lean

Statistics

MetricCount
DefinitionsCompleteLinearOrder, toSuccOrder
2
Theoremsexists_of_nonempty_of_not_isPredPrelimit, mem_of_nonempty_of_not_isPredPrelimit, exists_of_nonempty_of_not_isSuccPrelimit, mem_of_nonempty_of_not_isSuccPrelimit, iSup_Iio, sSup_Iio, iSup_Iio, sSup_Iio, csInf_mem_of_not_isPredPrelimit, csSup_mem_of_not_isSuccPrelimit, csSup_mem_of_not_isSuccPrelimit', exists_eq_ciInf_of_not_isPredPrelimit, exists_eq_ciSup_of_not_isSuccPrelimit, exists_eq_ciSup_of_not_isSuccPrelimit', exists_eq_iInf_of_not_isPredPrelimit, exists_eq_iSup_of_not_isSuccPrelimit, iSup_Iio_eq_self_iff_isSuccPrelimit, iSup_succ, sInf_mem_of_not_isPredPrelimit, sSup_Iio_eq_self_iff_isSuccPrelimit, sSup_mem_of_not_isSuccPrelimit
21
Total23

ConditionallyCompleteLinearOrder

Definitions

NameCategoryTheorems
toSuccOrder 📖CompOp

IsGLB

Theorems

NameKindAssumesProvesValidatesDepends On
exists_of_nonempty_of_not_isPredPrelimit 📖IsGLB
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.range
Order.IsPredPrelimit
Preorder.toLT
mem_of_nonempty_of_not_isPredPrelimit
Set.range_nonempty
mem_of_nonempty_of_not_isPredPrelimit 📖mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.Nonempty
Order.IsPredPrelimit
Preorder.toLT
Set
Set.instMembership
csInf_mem_of_not_isPredPrelimit
bddBelow
csInf_eq

IsLUB

Theorems

NameKindAssumesProvesValidatesDepends On
exists_of_nonempty_of_not_isSuccPrelimit 📖IsLUB
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.range
Order.IsSuccPrelimit
Preorder.toLT
mem_of_nonempty_of_not_isSuccPrelimit
Set.range_nonempty
mem_of_nonempty_of_not_isSuccPrelimit 📖mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.Nonempty
Order.IsSuccPrelimit
Preorder.toLT
Set
Set.instMembership
csSup_mem_of_not_isSuccPrelimit
bddAbove
csSup_eq

Order.IsSuccLimit

Theorems

NameKindAssumesProvesValidatesDepends On
iSup_Iio 📖mathematicalOrder.IsSuccLimit
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iSup
Set.Elem
Set.Iio
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
Order.IsSuccPrelimit.iSup_Iio
isSuccPrelimit
sSup_Iio 📖mathematicalOrder.IsSuccLimit
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.Iio
Order.IsSuccPrelimit.sSup_Iio
isSuccPrelimit

Order.IsSuccPrelimit

Theorems

NameKindAssumesProvesValidatesDepends On
iSup_Iio 📖mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iSup
Set.Elem
Set.Iio
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
sSup_eq_iSup'
sSup_Iio
sSup_Iio 📖mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.Iio
eq_bot_or_bot_lt
IsMin.Iio_eq
csSup_empty
IsLUB.csSup_eq
isLUB_Iio

(root)

Definitions

NameCategoryTheorems
CompleteLinearOrder 📖CompData

Theorems

NameKindAssumesProvesValidatesDepends On
csInf_mem_of_not_isPredPrelimit 📖mathematicalSet.Nonempty
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Order.IsPredPrelimit
Preorder.toLT
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instMembership
not_forall_not
exists_lt_of_csInf_lt
CovBy.lt
eq_of_le_of_not_lt
csInf_le
csSup_mem_of_not_isSuccPrelimit 📖mathematicalSet.Nonempty
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Order.IsSuccPrelimit
Preorder.toLT
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
not_forall_not
exists_lt_of_lt_csSup
CovBy.lt
eq_of_le_of_not_lt
le_csSup
csSup_mem_of_not_isSuccPrelimit' 📖mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Order.IsSuccPrelimit
Preorder.toLT
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
Set.eq_empty_or_nonempty
csSup_empty
csSup_mem_of_not_isSuccPrelimit
exists_eq_ciInf_of_not_isPredPrelimit 📖BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.range
Order.IsPredPrelimit
Preorder.toLT
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
csInf_mem_of_not_isPredPrelimit
Set.range_nonempty
exists_eq_ciSup_of_not_isSuccPrelimit 📖BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.range
Order.IsSuccPrelimit
Preorder.toLT
iSup
ConditionallyCompletePartialOrderSup.toSupSet
csSup_mem_of_not_isSuccPrelimit
Set.range_nonempty
exists_eq_ciSup_of_not_isSuccPrelimit' 📖BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Set.range
Order.IsSuccPrelimit
Preorder.toLT
iSup
ConditionallyCompletePartialOrderSup.toSupSet
csSup_mem_of_not_isSuccPrelimit'
exists_eq_iInf_of_not_isPredPrelimit 📖Order.IsPredPrelimit
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
sInf_mem_of_not_isPredPrelimit
exists_eq_iSup_of_not_isSuccPrelimit 📖Order.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
iSup
ConditionallyCompletePartialOrderSup.toSupSet
sSup_mem_of_not_isSuccPrelimit
iSup_Iio_eq_self_iff_isSuccPrelimit 📖mathematicaliSup
Set.Elem
Set.Iio
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
Order.IsSuccPrelimit
Preorder.toLT
sSup_eq_iSup'
sSup_Iio_eq_self_iff_isSuccPrelimit
iSup_succ 📖mathematicaliSup
Set.Elem
Set.Iio
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
ConditionallyCompletePartialOrderSup.toSupSet
Order.succ
Set
Set.instMembership
le_antisymm
ciSup_le_iff'
Order.succ_le_of_lt
le_of_forall_lt
lt_ciSup_iff'
Order.lt_succ_of_not_isMax
LT.lt.not_isMax
sInf_mem_of_not_isPredPrelimit 📖mathematicalOrder.IsPredPrelimit
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instMembership
not_forall_not
sInf_lt_iff
CovBy.lt
eq_of_le_of_not_lt
sInf_le
sSup_Iio_eq_self_iff_isSuccPrelimit 📖mathematicalSupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Set.Iio
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Order.IsSuccPrelimit
Preorder.toLT
csSup_mem_of_not_isSuccPrelimit'
bddAbove_Iio
Order.IsSuccPrelimit.sSup_Iio
sSup_mem_of_not_isSuccPrelimit 📖mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
not_forall_not
lt_sSup_iff
CovBy.lt
eq_of_le_of_not_lt
le_sSup

---

← Back to Index