Documentation Verification Report

IntervalSucc

๐Ÿ“ Source: Mathlib/Order/SuccPred/IntervalSucc.lean

Statistics

MetricCount
Definitions0
Theoremspairwise_disjoint_on_Ico_pred, pairwise_disjoint_on_Ico_succ, pairwise_disjoint_on_Ioc_pred, pairwise_disjoint_on_Ioc_succ, pairwise_disjoint_on_Ioo_pred, pairwise_disjoint_on_Ioo_succ, biUnion_Ico_Ioc_map_succ, pairwise_disjoint_on_Ico_pred, pairwise_disjoint_on_Ico_succ, pairwise_disjoint_on_Ioc_pred, pairwise_disjoint_on_Ioc_succ, pairwise_disjoint_on_Ioo_pred, pairwise_disjoint_on_Ioo_succ, biUnion_Ici_Ico_map_succ, biUnion_Ici_Ioc_map_succ, iUnion_Ico_map_succ_eq_Ici, iUnion_Ioc_map_succ_eq_Ioi
17
Total17

Antitone

Theorems

NameKindAssumesProvesValidatesDepends On
pairwise_disjoint_on_Ico_pred ๐Ÿ“–mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ico
Order.pred
โ€”Monotone.pairwise_disjoint_on_Ico_succ
dual_left
pairwise_disjoint_on_Ico_succ ๐Ÿ“–mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ico
Order.succ
โ€”Monotone.pairwise_disjoint_on_Ico_pred
dual_left
pairwise_disjoint_on_Ioc_pred ๐Ÿ“–mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ioc
Order.pred
โ€”Monotone.pairwise_disjoint_on_Ioc_succ
dual_left
pairwise_disjoint_on_Ioc_succ ๐Ÿ“–mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ioc
Order.succ
โ€”Monotone.pairwise_disjoint_on_Ioc_pred
dual_left
pairwise_disjoint_on_Ioo_pred ๐Ÿ“–mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ioo
Order.pred
โ€”Monotone.pairwise_disjoint_on_Ioo_succ
dual_left
pairwise_disjoint_on_Ioo_succ ๐Ÿ“–mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ioo
Order.succ
โ€”Monotone.pairwise_disjoint_on_Ioo_pred
dual_left

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion_Ico_Ioc_map_succ ๐Ÿ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.iUnion
Set
Set.instMembership
Set.Ico
Set.Ioc
Order.succ
โ€”le_total
Set.Ico_eq_empty_of_le
Set.Ioc_eq_empty_of_le
Set.biUnion_empty
Set.iUnion_congr_Prop
Set.Ico_self
Set.Ioc_self
Set.Ioc_union_Ioc_eq_Ioc
Order.le_succ
Set.union_comm
IsMax.succ_eq
Set.empty_union
Order.Ico_succ_right_eq_insert_of_not_isMax
Set.biUnion_insert
pairwise_disjoint_on_Ico_pred ๐Ÿ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ico
Order.pred
โ€”Set.Ioc_toDual
pairwise_disjoint_on_Ioc_succ
dual
pairwise_disjoint_on_Ico_succ ๐Ÿ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ico
Order.succ
โ€”pairwise_disjoint_on
disjoint_iff_inf_le
LT.lt.not_ge
LE.le.trans
Order.succ_le_of_lt
pairwise_disjoint_on_Ioc_pred ๐Ÿ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ioc
Order.pred
โ€”Set.Ico_toDual
pairwise_disjoint_on_Ico_succ
dual
pairwise_disjoint_on_Ioc_succ ๐Ÿ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ioc
Order.succ
โ€”pairwise_disjoint_on
disjoint_iff_inf_le
LT.lt.not_ge
LE.le.trans
Order.succ_le_of_lt
pairwise_disjoint_on_Ioo_pred ๐Ÿ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ioo
Order.pred
โ€”Set.Ioo_toDual
pairwise_disjoint_on_Ioo_succ
dual
pairwise_disjoint_on_Ioo_succ ๐Ÿ“–mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ioo
Order.succ
โ€”Pairwise.mono
pairwise_disjoint_on_Ico_succ
Disjoint.mono
Set.Ioo_subset_Ico_self

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion_Ici_Ico_map_succ ๐Ÿ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
BddAbove
Set.image
Set.Ici
Set.iUnion
Set
Set.instMembership
Set.Ico
Order.succ
โ€”subset_antisymm
Set.instAntisymmSubset
Set.iUnionโ‚‚_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ico_subset_Ico_left
Set.Ico_subset_Ici_self
Mathlib.Tactic.Contrapose.contraposeโ‚‚
Set.iUnion_congr_Prop
biUnion_Ici_Ioc_map_succ ๐Ÿ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
BddAbove
Set.image
Set.Ici
Set.iUnion
Set
Set.instMembership
Set.Ioc
Order.succ
Set.Ioi
โ€”subset_antisymm
Set.instAntisymmSubset
Set.iUnionโ‚‚_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ioc_subset_Ioc_left
Set.Ioc_subset_Ioi_self
Mathlib.Tactic.Contrapose.contraposeโ‚‚
Set.iUnion_congr_Prop
iUnion_Ico_map_succ_eq_Ici ๐Ÿ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
BddAbove
Set.range
Set.iUnion
Set.Ico
Order.succ
Set.Ici
โ€”Set.iUnion_congr_Prop
Set.Ici_bot
Set.iUnion_true
biUnion_Ici_Ico_map_succ
Set.image_univ
iUnion_Ioc_map_succ_eq_Ioi ๐Ÿ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
BddAbove
Set.range
Set.iUnion
Set.Ioc
Order.succ
Set.Ioi
โ€”Set.iUnion_congr_Prop
Set.Ici_bot
Set.iUnion_true
biUnion_Ici_Ioc_map_succ
Set.image_univ

---

โ† Back to Index