Documentation Verification Report

LinearLocallyFinite

📁 Source: Mathlib/Order/SuccPred/LinearLocallyFinite.lean

Statistics

MetricCount
DefinitionspredOrder, succFn, succOrder, orderIsoIntOfLinearSuccPredArch, orderIsoNatOfLinearSuccPredArch, orderIsoRangeOfLinearSuccPredArch, orderIsoRangeToZOfLinearSuccPredArch, toZ
8
Theoremsof_linearOrder_locallyFiniteOrder, instIsPredArchimedeanOfLocallyFiniteOrder, instIsSuccArchimedeanOfLocallyFiniteOrder, isGLB_Ioc_of_isGLB_Ioi, isMax_of_succFn_le, le_of_lt_succFn, le_succFn, succFn_le_of_lt, succFn_spec, isPredArchimedean_of_isSuccArchimedean, isSuccArchimedean_iff_isPredArchimedean, isSuccArchimedean_of_isPredArchimedean, countable_of_linear_succ_pred_arch, injective_toZ, iterate_pred_toZ, iterate_succ_toZ, le_of_toZ_le, toZ_iterate_pred, toZ_iterate_pred_ge, toZ_iterate_pred_of_not_isMin, toZ_iterate_succ, toZ_iterate_succ_le, toZ_iterate_succ_of_not_isMax, toZ_le_iff, toZ_mono, toZ_neg, toZ_nonneg, toZ_of_eq, toZ_of_ge, toZ_of_lt
30
Total38

Countable

Theorems

NameKindAssumesProvesValidatesDepends On
of_linearOrder_locallyFiniteOrder 📖mathematicalCountablecountable_of_linear_succ_pred_arch
LinearOrder.isSuccArchimedean_of_isPredArchimedean
LinearLocallyFiniteOrder.instIsPredArchimedeanOfLocallyFiniteOrder

LinearLocallyFiniteOrder

Definitions

NameCategoryTheorems
predOrder 📖CompOp
succFn 📖CompOp
3 mathmath: succFn_le_of_lt, succFn_spec, le_succFn
succOrder 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsPredArchimedeanOfLocallyFiniteOrder 📖mathematicalIsPredArchimedean
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instIsPredArchimedeanOrderDual
instIsSuccArchimedeanOfLocallyFiniteOrder
instIsSuccArchimedeanOfLocallyFiniteOrder 📖mathematicalIsSuccArchimedean
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
le_iff_lt_or_eq
lt_of_le_of_ne
Function.iterate_succ'
Order.succ_le_of_lt
Finset.mem_Icc
Order.le_succ_iterate
LT.lt.le
Finite.exists_ne_map_eq_of_infinite
instInfiniteNat
Finite.of_fintype
le_total
Order.isMax_iterate_succ_of_eq_of_ne
LT.lt.ne
not_le
isGLB_Ioc_of_isGLB_Ioi 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsGLB
Preorder.toLE
Set.Ioi
Set.Iocle_or_gt
le_trans
le_rfl
LT.lt.le
isMax_of_succFn_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
succFn
IsMaxnot_lt
le_antisymm
le_succFn
Finset.coe_Ioc
succFn_spec
isGLB_Ioc_of_isGLB_Ioi
Finset.isGLB_mem
Finset.mem_Ioc
le_rfl
lt_irrefl
le_of_lt_succFn 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
succFn
Preorder.toLElt_isGLB_iff
succFn_spec
not_lt
not_le
mem_lowerBounds
le_succFn 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
succFn
le_isGLB_iff
succFn_spec
mem_lowerBounds
le_of_lt
succFn_le_of_lt 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
succFn
succFn_spec
mem_lowerBounds
IsGreatest.eq_1
IsGLB.eq_1
succFn_spec 📖mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioi
succFn
exists_glb_Ioi

LinearOrder

Theorems

NameKindAssumesProvesValidatesDepends On
isPredArchimedean_of_isSuccArchimedean 📖mathematicalIsPredArchimedean
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsSuccArchimedean.exists_succ_iterate_of_le
Nat.find_spec
Nat.find_min
Order.pred_succ_iterate_of_not_isMax
tsub_zero
Nat.instOrderedSub
lt_of_le_of_ne
Function.iterate_succ_apply'
Order.le_succ
not_isMax_of_lt
isSuccArchimedean_iff_isPredArchimedean 📖mathematicalIsSuccArchimedean
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsPredArchimedean
isPredArchimedean_of_isSuccArchimedean
isSuccArchimedean_of_isPredArchimedean
isSuccArchimedean_of_isPredArchimedean 📖mathematicalIsSuccArchimedean
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instIsSuccArchimedeanOrderDual
isPredArchimedean_of_isSuccArchimedean

(root)

Definitions

NameCategoryTheorems
orderIsoIntOfLinearSuccPredArch 📖CompOp
orderIsoNatOfLinearSuccPredArch 📖CompOp
orderIsoRangeOfLinearSuccPredArch 📖CompOp
orderIsoRangeToZOfLinearSuccPredArch 📖CompOp
toZ 📖CompOp
16 mathmath: toZ_of_eq, toZ_iterate_succ_of_not_isMax, toZ_iterate_pred_of_not_isMin, toZ_of_ge, injective_toZ, iterate_pred_toZ, toZ_iterate_pred_ge, toZ_nonneg, toZ_iterate_succ, toZ_iterate_pred, toZ_neg, toZ_iterate_succ_le, iterate_succ_toZ, toZ_of_lt, toZ_mono, toZ_le_iff

Theorems

NameKindAssumesProvesValidatesDepends On
countable_of_linear_succ_pred_arch 📖mathematicalCountableisEmpty_or_nonempty
Encodable.countable
Countable.of_equiv
SetCoe.countable
instCountableInt
injective_toZ 📖mathematicaltoZle_antisymm
le_of_toZ_le
Eq.le
iterate_pred_toZ 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.iterate
Order.pred
toZ
IsPredArchimedean.exists_pred_iterate_of_le
LinearOrder.isPredArchimedean_of_isSuccArchimedean
LT.lt.le
toZ_of_lt
neg_neg
Nat.find_spec
iterate_succ_toZ 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.iterate
Order.succ
toZ
IsSuccArchimedean.exists_succ_iterate_of_le
toZ_of_ge
Nat.find_spec
le_of_toZ_le 📖mathematicaltoZPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
le_or_gt
iterate_succ_toZ
Monotone.monotone_iterate_of_le_map
Order.succ_mono
Order.le_succ
LT.lt.trans_le
toZ_neg
toZ_nonneg
not_lt
LE.le.trans
LT.lt.le
iterate_pred_toZ
Monotone.antitone_iterate_of_map_le
Order.pred_mono
Order.pred_le
toZ_iterate_pred 📖mathematicaltoZ
Nat.iterate
Order.pred
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toZ_iterate_pred_of_not_isMin
not_isMin
toZ_iterate_pred_ge 📖mathematicaltoZ
Nat.iterate
Order.pred
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
le_or_gt
le_antisymm
Order.pred_iterate_le
toZ_of_eq
IsPredArchimedean.exists_pred_iterate_of_le
LinearOrder.isPredArchimedean_of_isSuccArchimedean
LT.lt.le
toZ_of_lt
Nat.find_min'
toZ_iterate_pred_of_not_isMin 📖mathematicalIsMin
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.iterate
Order.pred
toZtoZ_of_eq
neg_zero
lt_of_le_of_ne
Order.pred_iterate_le
Function.iterate_zero
Order.isMin_iterate_pred_of_eq_of_ne
iterate_pred_toZ
IsPredArchimedean.exists_pred_iterate_of_le
LinearOrder.isPredArchimedean_of_isSuccArchimedean
LT.lt.le
toZ_of_lt
max_eq_left
neg_neg
toZ_iterate_succ 📖mathematicaltoZ
Nat.iterate
Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toZ_iterate_succ_of_not_isMax
not_isMax
toZ_iterate_succ_le 📖mathematicaltoZ
Nat.iterate
Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsSuccArchimedean.exists_succ_iterate_of_le
Order.le_succ_iterate
toZ_of_ge
Nat.find_min'
toZ_iterate_succ_of_not_isMax 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.iterate
Order.succ
toZiterate_succ_toZ
Order.le_succ_iterate
IsSuccArchimedean.exists_succ_iterate_of_le
toZ_of_ge
max_eq_left
Order.isMax_iterate_succ_of_eq_of_ne
toZ_le_iff 📖mathematicaltoZ
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
le_of_toZ_le
toZ_mono
toZ_mono 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toZle_antisymm
le_refl
le_or_gt
IsSuccArchimedean.exists_succ_iterate_of_le
Nat.find_spec
add_comm
iterate_succ_toZ
Function.iterate_add
Function.iterate_zero
le_of_eq
Order.max_of_succ_le
le_trans
Monotone.monotone_iterate_of_le_map
Order.succ_mono
Order.le_succ
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Function.iterate_succ'
le_of_toZ_le
le_of_not_ge
not_le
LT.lt.trans_le
LE.le.trans
LT.lt.le
toZ_neg
toZ_nonneg
IsPredArchimedean.exists_pred_iterate_of_le
LinearOrder.isPredArchimedean_of_isSuccArchimedean
iterate_pred_toZ
Order.min_of_le_pred
Monotone.antitone_iterate_of_map_le
Order.pred_mono
Order.pred_le
toZ_neg 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toZlt_of_le_of_ne
IsPredArchimedean.exists_pred_iterate_of_le
LinearOrder.isPredArchimedean_of_isSuccArchimedean
LT.lt.le
toZ_of_lt
iterate_pred_toZ
neg_zero
toZ_nonneg 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toZIsSuccArchimedean.exists_succ_iterate_of_le
toZ_of_ge
toZ_of_eq 📖mathematicaltoZIsSuccArchimedean.exists_succ_iterate_of_le
le_rfl
toZ_of_ge
le_antisymm
Nat.find_le
Function.iterate_zero
zero_le
Nat.instCanonicallyOrderedAdd
toZ_of_ge 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toZ
Nat.find
Nat.iterate
Order.succ
LinearOrder.toDecidableEq
IsSuccArchimedean.exists_succ_iterate_of_le
toZ_of_lt 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toZ
Nat.find
Nat.iterate
Order.pred
LinearOrder.toDecidableEq
IsPredArchimedean.exists_pred_iterate_of_le
LinearOrder.isPredArchimedean_of_isSuccArchimedean
LT.lt.le
not_le

---

← Back to Index