Documentation Verification Report

Relation

šŸ“ Source: Mathlib/Order/SuccPred/Relation.lean

Statistics

MetricCount
DefinitionsRelation, Relation, Relation, Relation, Relation
5
TheoremsreflTransGen_of_pred, reflTransGen_of_pred_of_ge, reflTransGen_of_pred_of_le, reflTransGen_of_succ, reflTransGen_of_succ_of_ge, reflTransGen_of_succ_of_le, transGen_of_pred_of_gt, transGen_of_pred_of_lt, transGen_of_pred_of_ne, transGen_of_pred_of_reflexive, transGen_of_succ_of_gt, transGen_of_succ_of_lt, transGen_of_succ_of_ne, transGen_of_succ_of_reflexive
14
Total19

CategoryTheory.GrothendieckTopology.Cover

Definitions

NameCategoryTheorems
Relation šŸ“–CompData
1 mathmath: shape_R

CategoryTheory.GrothendieckTopology.Cover.Arrow

Definitions

NameCategoryTheorems
Relation šŸ“–CompData
2 mathmath: CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_I₁, CategoryTheory.GrothendieckTopology.Cover.Relation.ext_iff

CommRingCat.Colimits

Definitions

NameCategoryTheorems
Relation šŸ“–CompData—

MonCat.Colimits

Definitions

NameCategoryTheorems
Relation šŸ“–CompData—

RingCat.Colimits

Definitions

NameCategoryTheorems
Relation šŸ“–CompData—

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
reflTransGen_of_pred šŸ“–mathematicalOrder.pred
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Relation.ReflTransGen—reflTransGen_of_succ
instIsSuccArchimedeanOrderDual
reflTransGen_of_pred_of_ge šŸ“–mathematicalOrder.pred
PartialOrder.toPreorder
Preorder.toLE
Relation.ReflTransGen—reflTransGen_of_succ_of_le
instIsSuccArchimedeanOrderDual
reflTransGen_of_pred_of_le šŸ“–mathematicalOrder.pred
PartialOrder.toPreorder
Preorder.toLE
Relation.ReflTransGen—reflTransGen_of_succ_of_ge
instIsSuccArchimedeanOrderDual
reflTransGen_of_succ šŸ“–mathematicalOrder.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Relation.ReflTransGen—le_total
reflTransGen_of_succ_of_le
reflTransGen_of_succ_of_ge
reflTransGen_of_succ_of_ge šŸ“–mathematicalOrder.succ
PartialOrder.toPreorder
Preorder.toLE
Relation.ReflTransGen—Relation.reflTransGen_swap
reflTransGen_of_succ_of_le
reflTransGen_of_succ_of_le šŸ“–mathematicalOrder.succ
PartialOrder.toPreorder
Preorder.toLE
Relation.ReflTransGen—LT.lt.trans_le
Order.le_succ
LE.le.eq_or_lt
transGen_of_pred_of_gt šŸ“–ā€”Order.pred
PartialOrder.toPreorder
Preorder.toLT
——transGen_of_succ_of_lt
instIsSuccArchimedeanOrderDual
transGen_of_pred_of_lt šŸ“–ā€”Order.pred
PartialOrder.toPreorder
Preorder.toLT
——transGen_of_succ_of_gt
instIsSuccArchimedeanOrderDual
transGen_of_pred_of_ne šŸ“–ā€”Order.pred
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
——transGen_of_succ_of_ne
instIsSuccArchimedeanOrderDual
transGen_of_pred_of_reflexive šŸ“–ā€”Reflexive
Order.pred
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
——transGen_of_succ_of_reflexive
instIsSuccArchimedeanOrderDual
transGen_of_succ_of_gt šŸ“–ā€”Order.succ
PartialOrder.toPreorder
Preorder.toLT
——Relation.reflTransGen_iff_eq_or_transGen
reflTransGen_of_succ_of_ge
LT.lt.le
LT.lt.ne
transGen_of_succ_of_lt šŸ“–ā€”Order.succ
PartialOrder.toPreorder
Preorder.toLT
——Relation.reflTransGen_iff_eq_or_transGen
reflTransGen_of_succ_of_le
LT.lt.le
LT.lt.ne'
transGen_of_succ_of_ne šŸ“–ā€”Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
——Relation.reflTransGen_iff_eq_or_transGen
reflTransGen_of_succ
transGen_of_succ_of_reflexive šŸ“–ā€”Reflexive
Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
——eq_or_ne
transGen_of_succ_of_ne

---

← Back to Index