Documentation Verification Report

SupIndep

πŸ“ Source: Mathlib/Order/SupIndep.lean

Statistics

MetricCount
DefinitionsSupIndep, instDecidableSupIndepOfDecidableEq, iSupIndep, sSupIndep
4
Theoremsantitone_fun, attach, biUnion, disjoint_sup_sup, iSupIndep_of_univ, image, independent, insert, le_sup_iff, mono, pairwiseDisjoint, product, sigma, subset, sup, union, supIndep_attach, supIndep_empty, supIndep_iff_disjoint_erase, supIndep_iff_pairwiseDisjoint, supIndep_map, supIndep_pair, supIndep_product_iff, supIndep_sigma_iff', supIndep_singleton, supIndep_univ_bool, supIndep_univ_fin_two, sSupIndep, supIndep, comp, comp', disjoint_biSup, injOn, injOn_iInf, injective, map_orderIso, mono, of_coe_Iic_comp, pairwiseDisjoint, sSupIndep_range, supIndep, supIndep', sup_indep_univ, iSupIndep_def, iSupIndep_def', iSupIndep_def'', iSupIndep_empty, iSupIndep_iff_pairwiseDisjoint, iSupIndep_iff_supIndep, iSupIndep_iff_supIndep_univ, iSupIndep_map_orderIso_iff, iSupIndep_ne_bot, iSupIndep_pair, iSupIndep_pempty, iSupIndep_subsingleton, disjoint_sSup, mono, pairwiseDisjoint, sSupIndep_empty, sSupIndep_iff, sSupIndep_iff_pairwiseDisjoint, sSupIndep_pair, sSupIndep_singleton
63
Total67

Finset

Definitions

NameCategoryTheorems
SupIndep πŸ“–MathDef
21 mathmath: Submodule.supIndep_torsionBySet_ideal, supIndep_univ_fin_two, iSupIndep.supIndep', iSupIndep.supIndep, supIndep_iff_pairwiseDisjoint, supIndep_empty, iSupIndep_iff_supIndep_of_injOn, supIndep_product_iff, supIndep_pair, supIndep_singleton, supIndep_sigma_iff', iSupIndep.sup_indep_univ, Submodule.supIndep_torsionBy, supIndep_map, supIndep_iff_disjoint_erase, supIndep_univ_bool, supIndep_attach, Finpartition.supIndep, iSupIndep_iff_supIndep, iSupIndep_iff_supIndep_univ, Set.PairwiseDisjoint.supIndep
instDecidableSupIndepOfDecidableEq πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
supIndep_attach πŸ“–mathematicalβ€”SupIndep
Finset
instMembership
attach
β€”attach_map_val
supIndep_map
supIndep_empty πŸ“–mathematicalβ€”SupIndep
Finset
instEmptyCollection
β€”notMem_empty
supIndep_iff_disjoint_erase πŸ“–mathematicalβ€”SupIndep
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
sup
Lattice.toSemilatticeSup
erase
β€”erase_subset
notMem_erase
Disjoint.mono_right
sup_mono
mem_erase
supIndep_iff_pairwiseDisjoint πŸ“–mathematicalβ€”SupIndep
DistribLattice.toLattice
Set.PairwiseDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SetLike.coe
Finset
instSetLike
β€”SupIndep.pairwiseDisjoint
disjoint_sup_right
supIndep_map πŸ“–mathematicalβ€”SupIndep
map
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”sup_map
map_subset_map
mem_map'
map_eq_image
SupIndep.image
supIndep_pair πŸ“–mathematicalβ€”SupIndep
Finset
instInsert
instSingleton
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”pair_comm
erase_insert_eq_erase
erase_eq_of_notMem
sup_singleton
supIndep_product_iff πŸ“–mathematicalβ€”SupIndep
product
sup
Lattice.toSemilatticeSup
β€”sup_image
sup_product_left
sup_product_right
SupIndep.product
supIndep_sigma_iff' πŸ“–mathematicalβ€”SupIndep
sigma
sup
Lattice.toSemilatticeSup
β€”SupIndep.disjoint_sup_sup
sup_map
sup_biUnion
sup_image
SupIndep.sigma
supIndep_singleton πŸ“–mathematicalβ€”SupIndep
Finset
instSingleton
β€”eq_empty_of_ssubset_singleton
sup_empty
disjoint_bot_right
supIndep_univ_bool πŸ“–mathematicalβ€”SupIndep
univ
Bool.fintype
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”supIndep_pair
disjoint_comm
supIndep_univ_fin_two πŸ“–mathematicalβ€”SupIndep
univ
Fin.fintype
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”supIndep_pair

Finset.SupIndep

Theorems

NameKindAssumesProvesValidatesDepends On
antitone_fun πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Finset.SupIndep
β€”β€”Disjoint.mono
Finset.sup_mono_fun
attach πŸ“–mathematicalFinset.SupIndepFinset
Finset.instMembership
Finset.attach
β€”Finset.supIndep_attach
biUnion πŸ“–mathematicalFinset.SupIndep
Finset.sup
Lattice.toSemilatticeSup
Finset.biUnionβ€”Finset.mem_biUnion
Disjoint.mono_right
Disjoint.symm
Disjoint.disjoint_sup_left_of_disjoint_sup_right
Finset.supIndep_iff_disjoint_erase
Finset.sup_singleton
Finset.sup_union
disjoint_sup_sup πŸ“–mathematicalFinset.SupIndep
Finset
Finset.instHasSubset
Disjoint
Finset.partialOrder
Finset.instOrderBot
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Finset.sup
Lattice.toSemilatticeSup
β€”Finset.induction
Finset.sup_empty
iSupIndep_of_univ πŸ“–mathematicalFinset.SupIndep
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CompleteLattice.toBoundedOrder
Finset.univ
iSupIndepβ€”iSupIndep_iff_supIndep_univ
image πŸ“–mathematicalFinset.SupIndepFinset.imageβ€”Finset.subset_image_iff
Finset.mem_image
Finset.sup_image
Finset.mem_image_of_mem
independent πŸ“–mathematicalFinset.SupIndep
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CompleteLattice.toBoundedOrder
iSupIndep
Finset
SetLike.instMembership
Finset.instSetLike
β€”iSupIndep_iff_supIndep
insert πŸ“–mathematicalFinset.SupIndep
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Finset.sup
Lattice.toSemilatticeSup
Finset
Finset.instInsert
β€”β€”
le_sup_iff πŸ“–mathematicalFinset.SupIndep
Finset
Finset.instHasSubset
Finset.instMembership
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Finset.sup
Lattice.toSemilatticeSup
β€”disjoint_self
Disjoint.mono_right
Finset.le_sup
mono πŸ“–β€”Finset.SupIndep
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”β€”Disjoint.mono
Finset.sup_mono_fun
pairwiseDisjoint πŸ“–mathematicalFinset.SupIndepSet.PairwiseDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
SetLike.coe
Finset
Finset.instSetLike
β€”Finset.sup_singleton
Finset.singleton_subset_iff
Finset.notMem_singleton
product πŸ“–mathematicalFinset.SupIndep
Finset.sup
Lattice.toSemilatticeSup
SProd.sprod
Finset
Finset.instSProd
β€”Finset.product_eq_biUnion
biUnion
Finset.sup_image
image
mono
Finset.le_sup
sigma πŸ“–mathematicalFinset.SupIndep
Finset.sup
Lattice.toSemilatticeSup
Finset.sigmaβ€”Finset.sigma_eq_biUnion
biUnion
Finset.sup_map
subset πŸ“–β€”Finset.SupIndep
Finset
Finset.instHasSubset
β€”β€”HasSubset.Subset.trans
Finset.instIsTransSubset
sup πŸ“–mathematicalFinset.SupIndep
Finset.sup
Lattice.toSemilatticeSup
Finset
Finset.instLattice
Finset.instOrderBot
β€”Finset.sup_eq_biUnion
biUnion
union πŸ“–mathematicalFinset.SupIndep
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Finset.sup
Lattice.toSemilatticeSup
Finset
Finset.instUnion
β€”Finset.biUnion_insert
Finset.singleton_biUnion

Set.PairwiseDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
sSupIndep πŸ“–mathematicalSet.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Order.Frame.toCompleteLattice
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
sSupIndepβ€”sSupIndep_iff_pairwiseDisjoint
supIndep πŸ“–mathematicalSet.PairwiseDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
SetLike.coe
Finset
Finset.instSetLike
Finset.SupIndepβ€”Finset.supIndep_iff_pairwiseDisjoint

(root)

Definitions

NameCategoryTheorems
iSupIndep πŸ“–MathDef
47 mathmath: Module.End.independent_genEigenspace, Module.End.eigenspaces_iSupIndep, DirectSum.IsInternal.submodule_iSupIndep, DirectSum.isInternal_submodule_iff_iSupIndep_and_iSup_eq_top, iSupIndep_empty, Finset.SupIndep.iSupIndep_of_univ, iSupIndep_pair, LinearIndependent.iSupIndep_span_singleton, iSupIndep_of_dfinsuppSumAddHom_injective', iSupIndep_iff_linearIndependent_of_ne_zero, Finset.SupIndep.independent, sSupIndep_iff, iSupIndep_def'', Projectivization.independent_iff_iSupIndep, iSupIndep_def', iSupIndep_iff_supIndep_of_injOn, iSupIndep_pempty, iSupIndep_ne_bot, iSupIndep_iff_finset_sum_eq_imp_eq, Subgroup.independent_of_coprime_order, iSupIndep_subsingleton, iSupIndep_def, HahnEmbedding.ArchimedeanStrata.iSupIndep_stratum', Module.End.independent_maxGenEigenspace, iSupIndep_iff_dfinsupp_lsum_injective, LieModule.iSupIndep_genWeightSpace, iSupIndep_map_orderIso_iff, OrthogonalFamily.independent, iSupIndep_of_dfinsupp_lsum_injective, Module.End.independent_iInf_maxGenEigenspace_of_forall_mapsTo, LieModule.iSupIndep_genWeightSpaceOf, iSupIndep_iff_finset_sum_eq_zero_imp_eq_zero, AddMonoidHom.independent_range_of_coprime_order, DirectSum.IsInternal.addSubgroup_iSupIndep, MonoidHom.independent_range_of_coprime_order, iSupIndep_iff_supIndep, iSupIndep_iff_supIndep_univ, LieModule.iSupIndep_genWeightSpace', iSupIndep_range_lsingle, LieSubmodule.iSupIndep_toSubmodule, iSupIndep_iff_pairwiseDisjoint, AddSubgroup.independent_of_coprime_order, iSupIndep_iff_dfinsuppSumAddHom_injective, DirectSum.IsInternal.addSubmonoid_iSupIndep, HahnEmbedding.ArchimedeanStrata.iSupIndep_stratum, iSupIndep_iff_forall_dfinsupp, iSupIndep_of_dfinsuppSumAddHom_injective
sSupIndep πŸ“–MathDef
19 mathmath: Partition.sSupIndep', Set.PairwiseDisjoint.sSupIndep, sSupIndep_iff, exists_sSupIndep_isCompl_sSup_atoms, sSupIndep_isotypicComponents, IsSemisimpleModule.finite_tfae, exists_sSupIndep_of_sSup_atoms_eq_top, sSupIndep_singleton, exists_sSupIndep_disjoint_sSup_atoms, sSupIndep_pair, Partition.sSupIndep, exists_sSupIndep_of_sSup_atoms, sSupIndep_iff_finite, IsSemisimpleModule.exists_sSupIndep_sSup_simples_eq_top, iSupIndep.sSupIndep_range, sSupIndep_iff_pairwiseDisjoint, IsSemisimpleModule.exists_linearEquiv_dfinsupp, LieAlgebra.IsSemisimple.sSupIndep_isAtom, sSupIndep_empty

Theorems

NameKindAssumesProvesValidatesDepends On
iSupIndep_def πŸ“–mathematicalβ€”iSupIndep
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”β€”
iSupIndep_def' πŸ“–mathematicalβ€”iSupIndep
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.image
setOf
β€”sSup_image
iSupIndep_def'' πŸ“–mathematicalβ€”iSupIndep
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
setOf
β€”iSupIndep_def'
iSupIndep_empty πŸ“–mathematicalβ€”iSupIndepβ€”β€”
iSupIndep_iff_pairwiseDisjoint πŸ“–mathematicalβ€”iSupIndep
Order.Frame.toCompleteLattice
Pairwise
Function.onFun
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
β€”iSupIndep.pairwiseDisjoint
disjoint_iSup_iff
iSupIndep_iff_supIndep πŸ“–mathematicalβ€”iSupIndep
Finset
SetLike.instMembership
Finset.instSetLike
Finset.SupIndep
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CompleteLattice.toBoundedOrder
β€”Finset.supIndep_iff_disjoint_erase
Finset.sup_eq_iSup
iSup_subtype
iSup_congr_Prop
iSup_comm
iSup_and
iSupIndep_iff_supIndep_univ πŸ“–mathematicalβ€”iSupIndep
Finset.SupIndep
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CompleteLattice.toBoundedOrder
Finset.univ
β€”Finset.sup_eq_iSup
iSup_congr_Prop
iSupIndep_map_orderIso_iff πŸ“–mathematicalβ€”iSupIndep
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instFunLikeOrderIso
β€”Function.LeftInverse.comp_eq_id
Equiv.left_inv
iSupIndep.map_orderIso
iSupIndep_ne_bot πŸ“–mathematicalβ€”iSupIndep
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”eq_or_ne
iSup_split
iSup_subtype
iSup_congr_Prop
iSup_comm
iSup_bot
sup_of_le_right
iSupIndep.comp
Subtype.val_injective
iSupIndep_pair πŸ“–mathematicalβ€”iSupIndep
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
β€”iSupIndep.pairwiseDisjoint
Disjoint.mono_right
iSup_le
Eq.le
Disjoint.symm
iSupIndep_pempty πŸ“–mathematicalβ€”iSupIndepβ€”β€”
iSupIndep_subsingleton πŸ“–mathematicalβ€”iSupIndepβ€”iSup_congr_Prop
iSup_neg
iSup_bot
sSupIndep_empty πŸ“–mathematicalβ€”sSupIndep
Set
Set.instEmptyCollection
β€”Set.notMem_empty
sSupIndep_iff πŸ“–mathematicalβ€”sSupIndep
iSupIndep
Set
Set.instMembership
β€”sSup_eq_iSup
iSup_congr_Prop
iSup_and
iSup_subtype
sSupIndep_iff_pairwiseDisjoint πŸ“–mathematicalβ€”sSupIndep
Order.Frame.toCompleteLattice
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
β€”sSupIndep.pairwiseDisjoint
disjoint_sSup_iff
sSupIndep_pair πŸ“–mathematicalβ€”sSupIndep
Set
Set.instInsert
Set.instSingletonSet
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
β€”sSupIndep.pairwiseDisjoint
Set.mem_insert
Set.mem_insert_of_mem
Set.mem_singleton
Set.insert_diff_of_mem
Set.diff_singleton_eq_self
sSup_singleton
Set.insert_diff_eq_singleton
Disjoint.symm
sSupIndep_singleton πŸ“–mathematicalβ€”sSupIndep
Set
Set.instSingletonSet
β€”sdiff_self
sSup_empty

iSupIndep

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”iSupIndepβ€”β€”Disjoint.mono_right
LE.le.trans
iSup_mono
iSup_const_mono
iSup_comp_le
comp' πŸ“–β€”iSupIndepβ€”β€”Function.Surjective.iSup_comp
Disjoint.mono_right
biSup_mono
disjoint_biSup πŸ“–mathematicaliSupIndep
Set
Set.instMembership
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”Disjoint.mono_right
biSup_mono
injOn πŸ“–mathematicaliSupIndepSet.InjOn
setOf
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”le_iSupβ‚‚
Disjoint.mono_right
disjoint_self
injOn_iInf πŸ“–mathematicaliSupIndepSet.InjOn
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
setOf
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Function.ne_iff
le_inf
iInf_le
Disjoint.eq_bot
Disjoint.mono_right
le_iSupβ‚‚_of_le
le_rfl
injective πŸ“–β€”iSupIndepβ€”β€”injOn
map_orderIso πŸ“–mathematicaliSupIndepDFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instFunLikeOrderIso
β€”Disjoint.mono_right
Monotone.le_map_iSupβ‚‚
OrderIso.monotone
Disjoint.map_orderIso
mono πŸ“–β€”iSupIndep
Pi.hasLe
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
β€”β€”Disjoint.mono
iSupβ‚‚_mono
of_coe_Iic_comp πŸ“–mathematicaliSupIndep
Set.Elem
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Set
Set.instMembership
Set.Iic.instCompleteLatticeβ€”iSup_congr_Prop
pairwiseDisjoint πŸ“–mathematicaliSupIndepPairwise
Function.onFun
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
β€”disjoint_sSup_right
iSup_pos
sSupIndep_range πŸ“–mathematicaliSupIndepsSupIndep
Set.range
β€”sSupIndep_iff
comp'
Set.coe_comp_rangeFactorization
Set.rangeFactorization_surjective
supIndep πŸ“–mathematicaliSupIndep
Finset
SetLike.instMembership
Finset.instSetLike
Finset.SupIndep
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CompleteLattice.toBoundedOrder
β€”iSupIndep_iff_supIndep
supIndep' πŸ“–mathematicaliSupIndepFinset.SupIndep
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CompleteLattice.toBoundedOrder
β€”supIndep
comp
Subtype.coe_injective
sup_indep_univ πŸ“–mathematicaliSupIndepFinset.SupIndep
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CompleteLattice.toBoundedOrder
Finset.univ
β€”iSupIndep_iff_supIndep_univ

sSupIndep

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_sSup πŸ“–mathematicalsSupIndep
Set
Set.instMembership
Set.instHasSubset
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”mono
Set.insert_subset_iff
Set.mem_insert
Set.diff_singleton_eq_self
Set.insert_diff_of_mem
Set.mem_singleton
mono πŸ“–β€”sSupIndep
Set
Set.instHasSubset
β€”β€”Disjoint.mono_right
sSup_le_sSup
Set.diff_subset_diff_left
pairwiseDisjoint πŸ“–mathematicalsSupIndepSet.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
β€”disjoint_sSup_right
Set.mem_diff

---

← Back to Index