Documentation Verification Report

SymmDiff

πŸ“ Source: Mathlib/Order/SymmDiff.lean

Statistics

MetricCount
Definitionsbihimp, symmDiff, Β«term_⇔_Β», Β«term_βˆ†_Β»
4
TheoremssymmDiff_eq_xor, bihimp_eq_inf, bihimp_inf_bihimp_le_left, bihimp_inf_bihimp_le_right, bihimp_left, bihimp_right, le_symmDiff_sup_symmDiff_left, le_symmDiff_sup_symmDiff_right, symmDiff_eq_sup, symmDiff_left, symmDiff_right, bihimp_eq_bot, symmDiff_eq_top, bihimp_apply, bihimp_def, symmDiff_apply, symmDiff_def, bihimp_assoc, bihimp_bihimp_bihimp_comm, bihimp_bihimp_cancel_left, bihimp_bihimp_cancel_right, bihimp_bihimp_self, bihimp_bihimp_sup, bihimp_bot, bihimp_comm, bihimp_def, bihimp_eq, bihimp_eq', bihimp_eq_bot, bihimp_eq_inf, bihimp_eq_left, bihimp_eq_right, bihimp_eq_sup_himp_inf, bihimp_eq_top, bihimp_fst, bihimp_himp_eq_inf, bihimp_himp_left, bihimp_himp_right, bihimp_hnot_self, bihimp_iff_iff, bihimp_inf_sup, bihimp_isAssociative, bihimp_isCommutative, bihimp_le_iff_left, bihimp_le_iff_right, bihimp_left_comm, bihimp_left_inj, bihimp_left_injective, bihimp_left_involutive, bihimp_left_surjective, bihimp_of_ge, bihimp_of_le, bihimp_right_comm, bihimp_right_inj, bihimp_right_injective, bihimp_right_involutive, bihimp_right_surjective, bihimp_self, bihimp_snd, bihimp_top, bihimp_triangle, bot_bihimp, bot_symmDiff, codisjoint_bihimp_sup, compl_bihimp, compl_bihimp_compl, compl_bihimp_self, compl_symmDiff, compl_symmDiff_compl, compl_symmDiff_self, disjoint_symmDiff_inf, himp_bihimp, himp_bihimp_eq_inf, himp_bihimp_left, himp_bihimp_right, hnot_symmDiff_self, inf_himp_bihimp, inf_le_bihimp, inf_sup_symmDiff, inf_symmDiff_distrib_left, inf_symmDiff_distrib_right, inf_symmDiff_symmDiff, le_bihimp, le_bihimp_iff, le_symmDiff_iff_left, le_symmDiff_iff_right, le_symmDiff_sup_left, le_symmDiff_sup_right, ofDual_bihimp, ofDual_symmDiff, sdiff_symmDiff, sdiff_symmDiff', sdiff_symmDiff_eq_sup, sdiff_symmDiff_left, sdiff_symmDiff_right, sup_bihimp_bihimp, sup_himp_bihimp, sup_inf_bihimp, sup_sdiff_symmDiff, symmDiff_assoc, symmDiff_bot, symmDiff_comm, symmDiff_compl_self, symmDiff_def, symmDiff_eq, symmDiff_eq', symmDiff_eq_Xor', symmDiff_eq_bot, symmDiff_eq_iff_sdiff_eq, symmDiff_eq_left, symmDiff_eq_right, symmDiff_eq_sup, symmDiff_eq_sup_sdiff_inf, symmDiff_eq_top, symmDiff_fst, symmDiff_hnot_self, symmDiff_isAssociative, symmDiff_isCommutative, symmDiff_le, symmDiff_le_iff, symmDiff_le_sup, symmDiff_left_comm, symmDiff_left_inj, symmDiff_left_injective, symmDiff_left_involutive, symmDiff_left_surjective, symmDiff_of_ge, symmDiff_of_le, symmDiff_right_comm, symmDiff_right_inj, symmDiff_right_injective, symmDiff_right_involutive, symmDiff_right_surjective, symmDiff_sdiff, symmDiff_sdiff_eq_sup, symmDiff_sdiff_inf, symmDiff_sdiff_left, symmDiff_sdiff_right, symmDiff_self, symmDiff_snd, symmDiff_sup_inf, symmDiff_symmDiff_cancel_left, symmDiff_symmDiff_cancel_right, symmDiff_symmDiff_inf, symmDiff_symmDiff_left, symmDiff_symmDiff_right, symmDiff_symmDiff_right', symmDiff_symmDiff_self', symmDiff_symmDiff_symmDiff_comm, symmDiff_top, symmDiff_top', symmDiff_triangle, toDual_bihimp, toDual_symmDiff, top_bihimp, top_symmDiff, top_symmDiff'
157
Total161

Bool

Theorems

NameKindAssumesProvesValidatesDepends On
symmDiff_eq_xor πŸ“–mathematicalβ€”symmDiff
BooleanAlgebra.toSDiff
instBooleanAlgebra
β€”β€”

Codisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
bihimp_eq_inf πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toOrderTop
bihimp
SemilatticeInf.toMin
GeneralizedHeytingAlgebra.toHImp
β€”bihimp.eq_1
himp_eq_left
himp_eq_right
bihimp_inf_bihimp_le_left πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
CoheytingAlgebra.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toMin
bihimp
BooleanAlgebra.toHImp
β€”Disjoint.le_symmDiff_sup_symmDiff_left
dual
bihimp_inf_bihimp_le_right πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
CoheytingAlgebra.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toMin
bihimp
BooleanAlgebra.toHImp
β€”Disjoint.le_symmDiff_sup_symmDiff_right
dual
bihimp_left πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
CoheytingAlgebra.toOrderTop
bihimp
SemilatticeInf.toMin
BooleanAlgebra.toHImp
β€”mono_left
inf_le_bihimp
inf_left
bihimp_right πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
CoheytingAlgebra.toOrderTop
bihimp
SemilatticeInf.toMin
BooleanAlgebra.toHImp
β€”mono_right
inf_le_bihimp
inf_right

Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
le_symmDiff_sup_symmDiff_left πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
symmDiff
BooleanAlgebra.toSDiff
β€”eq_bot
sdiff_bot
le_refl
sdiff_inf
sup_le_sup
le_sup_right
le_symmDiff_sup_symmDiff_right πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
symmDiff
BooleanAlgebra.toSDiff
β€”symmDiff_comm
le_symmDiff_sup_symmDiff_left
symmDiff_eq_sup πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”symmDiff.eq_1
sdiff_eq_left
sdiff_eq_right
symmDiff_left πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_eq_sup_sdiff_inf
disjoint_sdiff_left
sup_left
symmDiff_right πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedBooleanAlgebra.toSDiff
β€”symm
symmDiff_left

IsCompl

Theorems

NameKindAssumesProvesValidatesDepends On
bihimp_eq_bot πŸ“–mathematicalIsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toBoundedOrder
bihimp
SemilatticeInf.toMin
GeneralizedHeytingAlgebra.toHImp
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
β€”eq_compl
compl_bihimp_self
symmDiff_eq_top πŸ“–mathematicalIsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toBoundedOrder
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CoheytingAlgebra.toOrderTop
β€”eq_hnot
hnot_symmDiff_self

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
bihimp_apply πŸ“–mathematicalβ€”bihimp
instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
instHImpForall
GeneralizedHeytingAlgebra.toHImp
β€”β€”
bihimp_def πŸ“–mathematicalβ€”bihimp
instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
instHImpForall
GeneralizedHeytingAlgebra.toHImp
β€”β€”
symmDiff_apply πŸ“–mathematicalβ€”symmDiff
instMaxForall_mathlib
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
sdiff
GeneralizedCoheytingAlgebra.toSDiff
β€”β€”
symmDiff_def πŸ“–mathematicalβ€”symmDiff
instMaxForall_mathlib
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
sdiff
GeneralizedCoheytingAlgebra.toSDiff
β€”β€”

(root)

Definitions

NameCategoryTheorems
bihimp πŸ“–CompOp
76 mathmath: bihimp_left_involutive, bihimp_bihimp_cancel_right, bihimp_eq_left, codisjoint_bihimp_sup, IsCompl.bihimp_eq_bot, bihimp_bihimp_sup, inf_himp_bihimp, Codisjoint.bihimp_right, bihimp_right_surjective, bihimp_himp_left, bihimp_eq_right, bihimp_himp_eq_inf, top_bihimp, compl_symmDiff, Pi.bihimp_apply, Pi.bihimp_def, himp_bihimp_left, bihimp_left_comm, bihimp_left_surjective, bihimp_le_iff_left, bihimp_le_iff_right, bihimp_bihimp_self, MeasurableSet.bihimp, bihimp_triangle, bihimp_eq, bihimp_right_inj, bihimp_right_comm, bihimp_iff_iff, bihimp_eq_sup_himp_inf, bihimp_of_le, inf_le_bihimp, bihimp_comm, Codisjoint.bihimp_left, Codisjoint.bihimp_inf_bihimp_le_right, himp_bihimp_right, bihimp_of_ge, bihimp_inf_sup, bihimp_right_involutive, bihimp_eq_inf, bihimp_self, compl_bihimp_self, sup_bihimp_bihimp, bihimp_def, bihimp_left_inj, bihimp_left_injective, bihimp_bihimp_cancel_left, himp_bihimp_eq_inf, Codisjoint.bihimp_inf_bihimp_le_left, toDual_bihimp, sup_inf_bihimp, ofDual_symmDiff, map_bihimp, bot_bihimp, himp_bihimp, bihimp_bihimp_bihimp_comm, sup_himp_bihimp, ofDual_bihimp, toDual_symmDiff, compl_bihimp_compl, bihimp_fst, bihimp_isCommutative, bihimp_eq', bihimp_isAssociative, bihimp_hnot_self, compl_bihimp, bihimp_top, bihimp_snd, Codisjoint.bihimp_eq_inf, le_bihimp_iff, bihimp_eq_top, bihimp_bot, bihimp_himp_right, bihimp_assoc, le_bihimp, bihimp_eq_bot, bihimp_right_injective
symmDiff πŸ“–CompOp
194 mathmath: MeasureTheory.Measure.MeasureDense.approx, map_symmDiff', Pi.symmDiff_def, Set.inter_symmDiff_distrib_left, compl_symmDiff_self, symmDiff_def, Set.smul_set_symmDiff, ofBoolRing_sub, symmDiff_le, MeasureTheory.measureReal_symmDiff_le, symmDiff_eq', MeasureTheory.NullMeasurableSet.exists_isOpen_symmDiff_lt, MeasureTheory.exists_measure_symmDiff_lt_of_generateFrom_isSetRing, inf_symmDiff_distrib_right, Set.image_symmDiff, sdiff_symmDiff, Pi.symmDiff_apply, symmDiff_compl_self, Finset.symmDiff_eq_union_iff, MeasureTheory.measure_symmDiff_eq_top, symmDiff_symmDiff_self', Finset.Colex.toColex_lt_toColex_iff_max'_mem, Set.toFinset_symmDiff, symmDiff_top, hnot_symmDiff_self, Set.indicator_symmDiff, IsCompl.symmDiff_eq_top, Finset.Colex.le_iff_max'_mem, symmDiff_right_comm, Set.symmDiff_def, Disjoint.le_symmDiff_sup_symmDiff_right, symmDiff_top', MeasureTheory.measureReal_symmDiff_eq, symmDiff_of_ge, symmDiff_left_inj, disjoint_symmDiff_inf, top_symmDiff, symmDiff_assoc, sdiff_symmDiff', biSup_symmDiff_biSup_le, Finset.Colex.toColex_le_toColex_iff_max'_mem, Finset.smul_finset_symmDiff, Set.mem_symmDiff, beattySeq'_symmDiff_beattySeq_pos, IsAddFoelner.tendsto_meas_vadd_symmDiff_vadd, MeasureTheory.abs_measureReal_sub_le_measureReal_symmDiff', compl_symmDiff, ofBoolRing_add, IsFoelner.tendsto_meas_smul_symmDiff, symmDiff_fst, bot_symmDiff, SimpleGraph.Subgraph.IsPerfectMatching.isAlternating_symmDiff_left, MeasureTheory.Measure.MeasureDense.fin_meas_approx, MeasureTheory.edist_indicatorConstLp_eq_enorm, symmDiff_comm, symmDiff_sdiff_right, symmDiff_left_involutive, symmDiff_sdiff_left, Finset.vadd_finset_symmDiff, symmDiff_symmDiff_right, MeasureTheory.measure_symmDiff_le, MeasureTheory.measure_neg_vadd_symmDiff, symmDiff_right_inj, toBoolAlg_add, beattySeq_symmDiff_beattySeq'_pos, Irrational.beattySeq_symmDiff_beattySeq_pos, Set.union_symmDiff_subset, Finset.symmDiff_nonempty, symmDiff_snd, Disjoint.symmDiff_eq_sup, Finset.smul_finset_symmDiffβ‚€, Set.Finite.toFinset_symmDiff, symmDiff_eq_right, symmDiff_eq, MeasureTheory.le_measure_symmDiff, symmDiff_eq_sup_sdiff_inf, Set.mulIndicator_symmDiff, MeasureTheory.measure_symmDiff_inv_smul, Finset.symmDiff_subset_sdiff, Finset.symmDiff_subset_union, symmDiff_eq_iff_sdiff_eq, dist_mulIndicator, symmDiff_sup_inf, symmDiff_self, le_symmDiff_iff_right, symmDiff_triangle, isFoelner_iff, ofBoolAlg_symmDiff, symmDiff_left_surjective, IsFoelner.tendsto_meas_smul_symmDiff_smul, Set.apply_indicator_symmDiff, Disjoint.le_symmDiff_sup_symmDiff_left, inf_symmDiff_distrib_left, symmDiff_isAssociative, Set.subset_symmDiff_union_symmDiff_right, Set.symmDiff_subset_union, MeasureTheory.tendsto_measure_symmDiff_preimage_nhds_zero, symmDiff_isCommutative, nndist_mulIndicator, MeasureTheory.eLpNorm_indicator_sub_indicator, compl_symmDiff_compl, MeasurableSet.symmDiff, Filter.EventuallyEq.symmDiff, SimpleGraph.Subgraph.IsPerfectMatching.symmDiff_isCycles, Set.Finite.symmDiff_congr, Set.inter_symmDiff_distrib_right, MeasureTheory.measure_inv_smul_symmDiff, Finset.coe_symmDiff, le_symmDiff_sup_left, symmDiff_sdiff, symmDiff_sdiff_eq_sup, symmDiff_le_sup, SimpleGraph.Subgraph.IsPerfectMatching.symmDiff_of_isAlternating, symmDiff_symmDiff_left, symmDiff_symmDiff_cancel_left, symmDiff_eq_bot, Finset.Colex.lt_iff_max'_mem, Set.apply_mulIndicator_symmDiff, MeasureTheory.MeasuredSets.dist_def, Finset.symmDiff_subset_sdiff', le_symmDiff_iff_left, symmDiff_le_iff, inf_sup_symmDiff, symmDiff_eq_Xor', dist_indicator, symmDiff_right_surjective, le_symmDiff_sup_right, symmDiff_symmDiff_right', Set.Finite.symmDiff, MeasureTheory.abs_measureReal_sub_le_measureReal_symmDiff, Bool.symmDiff_eq_xor, MeasureTheory.measure_symmDiff_eq, Set.symmDiff_eq_empty, symmDiff_hnot_self, symmDiff_left_injective, MeasureTheory.SignedMeasure.of_symmDiff_compl_positive_negative, toDual_bihimp, ofDual_symmDiff, Finset.symmDiff_eq_empty, symmDiff_eq_left, Set.mabs_mulIndicator_symmDiff, symmDiff_right_injective, symmDiff_eq_top, symmDiff_sdiff_inf, symmDiff_symmDiff_inf, MeasureTheory.ae_eq_set_symmDiff, MeasureTheory.measure_symmDiff_neg_vadd, symmDiff_of_le, sdiff_symmDiff_eq_sup, symmDiff_eq_sup, nndist_indicator, Finset.mem_symmDiff, IsAddFoelner.tendsto_meas_vadd_symmDiff, sdiff_symmDiff_left, Set.vadd_set_symmDiff, Set.symmDiff_nonempty, MeasureTheory.exists_measure_symmDiff_lt_of_generateFrom_isSetSemiring, Set.preimage_symmDiff, symmDiff_left_comm, ofDual_bihimp, Set.subset_image_symmDiff, iSup_symmDiff_iSup_le, toDual_symmDiff, symmDiff_right_involutive, map_symmDiff, symmDiff_symmDiff_symmDiff_comm, Disjoint.symmDiff_right, MeasurableSet.exists_isOpen_symmDiff_lt, MvPolynomial.support_symmDiff_support_subset_support_add, MeasureTheory.MeasurePreserving.measure_symmDiff_preimage_iterate_le, Set.abs_indicator_symmDiff, top_symmDiff', inf_symmDiff_symmDiff, compl_bihimp, MeasureTheory.MeasuredSets.edist_def, MeasureTheory.measure_symmDiff_eq_zero_iff, symmDiff_symmDiff_cancel_right, symmDiff_bot, Finset.symmDiff_eq_union, edist_indicator, MeasureTheory.NullMeasurableSet.symmDiff, isAddFoelner_iff, toBoolRing_symmDiff, Disjoint.symmDiff_left, SimpleGraph.Subgraph.IsPerfectMatching.isAlternating_symmDiff_right, Set.smul_set_symmDiffβ‚€, Set.symmDiff_union_subset, MeasureTheory.dist_indicatorConstLp_eq_norm, sdiff_symmDiff_right, Finset.image_symmDiff, Set.union_symmDiff_union_subset, sup_sdiff_symmDiff, edist_mulIndicator, Set.subset_symmDiff_union_symmDiff_left

Theorems

NameKindAssumesProvesValidatesDepends On
bihimp_assoc πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”symmDiff_assoc
bihimp_bihimp_bihimp_comm πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”bihimp_assoc
bihimp_left_comm
bihimp_bihimp_cancel_left πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”bihimp_self
top_bihimp
bihimp_bihimp_cancel_right πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”bihimp_assoc
bihimp_self
bihimp_top
bihimp_bihimp_self πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”bihimp_comm
bihimp_bihimp_cancel_left
bihimp_bihimp_sup πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”symmDiff_symmDiff_inf
bihimp_bot πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
GeneralizedHeytingAlgebra.toHImp
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
Compl.compl
HeytingAlgebra.toCompl
β€”bot_himp
himp_bot
inf_of_le_right
bihimp_comm πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
β€”inf_comm
bihimp_def πŸ“–mathematicalβ€”bihimp
HImp.himp
β€”β€”
bihimp_eq πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Compl.compl
BooleanAlgebra.toCompl
β€”himp_eq
bihimp_eq' πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Compl.compl
BooleanAlgebra.toCompl
β€”symmDiff_eq'
bihimp_eq_bot πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
Bot.bot
BooleanAlgebra.toBot
IsCompl
SemilatticeInf.toPartialOrder
BooleanAlgebra.toBoundedOrder
β€”bihimp_eq'
compl_sup
sup_eq_bot_iff
compl_eq_bot
isCompl_iff
disjoint_iff
codisjoint_iff
bihimp_eq_inf πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
Codisjoint
SemilatticeInf.toPartialOrder
CoheytingAlgebra.toOrderTop
β€”symmDiff_eq_sup
bihimp_eq_left πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
Top.top
BooleanAlgebra.toTop
β€”symmDiff_eq_left
bihimp_eq_right πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
Top.top
BooleanAlgebra.toTop
β€”symmDiff_eq_right
bihimp_eq_sup_himp_inf πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
HImp.himp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”himp_inf_distrib
sup_himp_self_left
sup_himp_self_right
bihimp_eq_top πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toOrderTop
β€”symmDiff_eq_bot
bihimp_fst πŸ“–mathematicalβ€”bihimp
Prod.instMin_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
Prod.instHImp
GeneralizedHeytingAlgebra.toHImp
β€”β€”
bihimp_himp_eq_inf πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
HImp.himp
β€”symmDiff_sdiff_eq_sup
bihimp_himp_left πŸ“–mathematicalβ€”HImp.himp
BooleanAlgebra.toHImp
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sdiff_symmDiff_left
bihimp_himp_right πŸ“–mathematicalβ€”HImp.himp
BooleanAlgebra.toHImp
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sdiff_symmDiff_right
bihimp_hnot_self πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
GeneralizedHeytingAlgebra.toHImp
Compl.compl
HeytingAlgebra.toCompl
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
β€”symmDiff_hnot_self
bihimp_iff_iff πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Prop.instBooleanAlgebra
BooleanAlgebra.toHImp
β€”β€”
bihimp_inf_sup πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
bihimp
GeneralizedHeytingAlgebra.toHImp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”symmDiff_sup_inf
bihimp_isAssociative πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”bihimp_assoc
bihimp_isCommutative πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
β€”bihimp_comm
bihimp_le_iff_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
bihimp
SemilatticeInf.toMin
BooleanAlgebra.toHImp
Codisjoint
CoheytingAlgebra.toOrderTop
β€”le_symmDiff_iff_left
bihimp_le_iff_right πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
bihimp
SemilatticeInf.toMin
BooleanAlgebra.toHImp
Codisjoint
CoheytingAlgebra.toOrderTop
β€”le_symmDiff_iff_right
bihimp_left_comm πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”bihimp_comm
bihimp_left_inj πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”bihimp_left_injective
bihimp_left_injective πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”symmDiff_left_injective
bihimp_left_involutive πŸ“–mathematicalβ€”Function.Involutive
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”bihimp_bihimp_cancel_right
bihimp_left_surjective πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”symmDiff_left_surjective
bihimp_of_ge πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
bihimp
SemilatticeInf.toMin
GeneralizedHeytingAlgebra.toHImp
HImp.himp
β€”bihimp.eq_1
himp_eq_top_iff
top_inf_eq
bihimp_of_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
bihimp
SemilatticeInf.toMin
GeneralizedHeytingAlgebra.toHImp
HImp.himp
β€”bihimp.eq_1
himp_eq_top_iff
inf_top_eq
bihimp_right_comm πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”bihimp_assoc
bihimp_comm
bihimp_right_inj πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”bihimp_right_injective
bihimp_right_injective πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”symmDiff_right_injective
bihimp_right_involutive πŸ“–mathematicalβ€”Function.Involutive
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”bihimp_bihimp_cancel_left
bihimp_right_surjective πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
β€”symmDiff_right_surjective
bihimp_self πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toOrderTop
β€”bihimp.eq_1
inf_idem
himp_self
bihimp_snd πŸ“–mathematicalβ€”bihimp
Prod.instMin_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
Prod.instHImp
GeneralizedHeytingAlgebra.toHImp
β€”β€”
bihimp_top πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toOrderTop
β€”bihimp.eq_1
himp_top
top_himp
inf_top_eq
bihimp_triangle πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
SemilatticeInf.toMin
bihimp
GeneralizedHeytingAlgebra.toHImp
β€”symmDiff_triangle
bot_bihimp πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
GeneralizedHeytingAlgebra.toHImp
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
Compl.compl
HeytingAlgebra.toCompl
β€”himp_bot
bot_himp
inf_of_le_left
bot_symmDiff πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
GeneralizedCoheytingAlgebra.toOrderBot
β€”symmDiff_comm
symmDiff_bot
codisjoint_bihimp_sup πŸ“–mathematicalβ€”Codisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
CoheytingAlgebra.toOrderTop
bihimp
SemilatticeInf.toMin
BooleanAlgebra.toHImp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”disjoint_symmDiff_inf
compl_bihimp πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
BooleanAlgebra.toSDiff
β€”compl_symmDiff
compl_bihimp_compl πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toHImp
Compl.compl
BooleanAlgebra.toCompl
β€”compl_symmDiff_compl
compl_bihimp_self πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
GeneralizedHeytingAlgebra.toHImp
Compl.compl
HeytingAlgebra.toCompl
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
β€”hnot_symmDiff_self
compl_symmDiff πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toSDiff
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
BooleanAlgebra.toHImp
β€”compl_sup_distrib
compl_sdiff
inf_comm
compl_symmDiff_compl πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toSDiff
Compl.compl
BooleanAlgebra.toCompl
β€”sup_comm
compl_sdiff_compl
sdiff_eq
symmDiff_eq
compl_symmDiff_self πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toSDiff
Compl.compl
BooleanAlgebra.toCompl
Top.top
BooleanAlgebra.toTop
β€”hnot_symmDiff_self
disjoint_symmDiff_inf πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedBooleanAlgebra.toSDiff
SemilatticeInf.toMin
β€”symmDiff_eq_sup_sdiff_inf
disjoint_sdiff_self_left
himp_bihimp πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
β€”bihimp.eq_1
himp_inf_distrib
himp_himp
himp_bihimp_eq_inf πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
HImp.himp
β€”sdiff_symmDiff_eq_sup
himp_bihimp_left πŸ“–mathematicalβ€”HImp.himp
BooleanAlgebra.toHImp
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
β€”symmDiff_sdiff_left
himp_bihimp_right πŸ“–mathematicalβ€”HImp.himp
BooleanAlgebra.toHImp
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
β€”symmDiff_sdiff_right
hnot_symmDiff_self πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedCoheytingAlgebra.toSDiff
HNot.hnot
CoheytingAlgebra.toHNot
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CoheytingAlgebra.toOrderTop
β€”eq_top_iff
symmDiff.eq_1
hnot_sdiff
sup_sdiff_self
Codisjoint.top_le
codisjoint_hnot_left
inf_himp_bihimp πŸ“–mathematicalβ€”HImp.himp
BooleanAlgebra.toHImp
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sup_sdiff_symmDiff
inf_le_bihimp πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
SemilatticeInf.toMin
bihimp
GeneralizedHeytingAlgebra.toHImp
β€”inf_le_inf
le_himp
inf_sup_symmDiff πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
symmDiff
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_comm
symmDiff_sup_inf
inf_symmDiff_distrib_left πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_eq_sup_sdiff_inf
inf_sdiff_distrib_left
inf_sup_left
inf_inf_distrib_left
inf_symmDiff_distrib_right πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedBooleanAlgebra.toSDiff
β€”inf_comm
inf_symmDiff_distrib_left
inf_symmDiff_symmDiff πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”symmDiff_comm
symmDiff_symmDiff_inf
le_bihimp πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
SemilatticeInf.toMin
bihimp
GeneralizedHeytingAlgebra.toHImp
β€”le_inf
le_himp_iff
le_bihimp_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
bihimp
SemilatticeInf.toMin
GeneralizedHeytingAlgebra.toHImp
β€”β€”
le_symmDiff_iff_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedBooleanAlgebra.toSDiff
Disjoint
GeneralizedBooleanAlgebra.toOrderBot
β€”disjoint_iff_inf_le
Eq.le
le_sdiff_right
inf_le_of_left_le
symmDiff_eq_sup_sdiff_inf
le_sup_left
Disjoint.symmDiff_eq_sup
le_symmDiff_iff_right πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedBooleanAlgebra.toSDiff
Disjoint
GeneralizedBooleanAlgebra.toOrderBot
β€”symmDiff_comm
le_symmDiff_iff_left
disjoint_comm
le_symmDiff_sup_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
symmDiff
GeneralizedCoheytingAlgebra.toSDiff
β€”le_symmDiff_sup_right
symmDiff_comm
le_symmDiff_sup_right πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
symmDiff
GeneralizedCoheytingAlgebra.toSDiff
β€”symmDiff_bot
symmDiff_triangle
ofDual_bihimp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
bihimp
OrderDual.instInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
OrderDual.instGeneralizedHeytingAlgebra
symmDiff
GeneralizedCoheytingAlgebra.toSDiff
β€”β€”
ofDual_symmDiff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
symmDiff
OrderDual.instSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
OrderDual.instGeneralizedCoheytingAlgebra
bihimp
GeneralizedHeytingAlgebra.toHImp
β€”β€”
sdiff_symmDiff πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sdiff_sdiff_sup_sdiff'
sdiff_symmDiff' πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sdiff_symmDiff
sdiff_sup
sdiff_symmDiff_eq_sup πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”symmDiff_comm
symmDiff_sdiff_eq_sup
sup_comm
sdiff_symmDiff_left πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sdiff_symmDiff
inf_of_le_left
sdiff_self
sup_of_le_left
sdiff_symmDiff_right πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”symmDiff_comm
inf_comm
sdiff_symmDiff_left
sup_bihimp_bihimp πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”inf_symmDiff_symmDiff
sup_himp_bihimp πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”himp_bihimp
inf_of_le_right
sup_inf_bihimp πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
bihimp
GeneralizedHeytingAlgebra.toHImp
β€”inf_sup_symmDiff
sup_sdiff_symmDiff πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
symmDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sdiff_eq_symm
inf_le_sup
symmDiff_eq_sup_sdiff_inf
symmDiff_assoc πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_symmDiff_left
symmDiff_symmDiff_right
symmDiff_bot πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
GeneralizedCoheytingAlgebra.toOrderBot
β€”symmDiff.eq_1
sdiff_bot
bot_sdiff
sup_bot_eq
symmDiff_comm πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_comm
symmDiff_compl_self πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toSDiff
Compl.compl
BooleanAlgebra.toCompl
Top.top
BooleanAlgebra.toTop
β€”symmDiff_hnot_self
symmDiff_def πŸ“–mathematicalβ€”symmDiffβ€”β€”
symmDiff_eq πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
Compl.compl
BooleanAlgebra.toCompl
β€”sdiff_eq
symmDiff_eq' πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
Compl.compl
BooleanAlgebra.toCompl
β€”symmDiff_eq_sup_sdiff_inf
sdiff_eq
compl_inf
symmDiff_eq_Xor' πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Prop.instBooleanAlgebra
BooleanAlgebra.toSDiff
Xor'
β€”β€”
symmDiff_eq_bot πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
GeneralizedCoheytingAlgebra.toOrderBot
β€”β€”
symmDiff_eq_iff_sdiff_eq πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_of_le
symmDiff_right_involutive
Equiv.apply_eq_iff_eq_symm_apply
symmDiff_eq_left πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
Bot.bot
GeneralizedBooleanAlgebra.toBot
β€”symmDiff_bot
symmDiff_eq_right πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
Bot.bot
GeneralizedBooleanAlgebra.toBot
β€”symmDiff_comm
symmDiff_eq_left
symmDiff_eq_sup πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedBooleanAlgebra.toOrderBot
β€”Disjoint.of_disjoint_inf_of_le
sdiff_eq_self_iff_disjoint
symmDiff_eq_sup_sdiff_inf
le_sup_left
Disjoint.symmDiff_eq_sup
symmDiff_eq_sup_sdiff_inf πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sup_sdiff
sdiff_inf_self_left
sdiff_inf_self_right
symmDiff_eq_top πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toSDiff
Top.top
BooleanAlgebra.toTop
IsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BooleanAlgebra.toBoundedOrder
β€”symmDiff_eq'
compl_inf
inf_eq_top_iff
compl_eq_top
isCompl_iff
disjoint_iff
codisjoint_iff
symmDiff_fst πŸ“–mathematicalβ€”symmDiff
Prod.instMax_mathlib
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
Prod.instSDiff
GeneralizedCoheytingAlgebra.toSDiff
β€”β€”
symmDiff_hnot_self πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedCoheytingAlgebra.toSDiff
HNot.hnot
CoheytingAlgebra.toHNot
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CoheytingAlgebra.toOrderTop
β€”symmDiff_comm
hnot_symmDiff_self
symmDiff_isAssociative πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_assoc
symmDiff_isCommutative πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”symmDiff_comm
symmDiff_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
symmDiff
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_le
sdiff_le_iff
symmDiff_le_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”β€”
symmDiff_le_sup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_le_sup
sdiff_le
symmDiff_left_comm πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_comm
symmDiff_left_inj πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_left_injective
symmDiff_left_injective πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”Function.Involutive.injective
symmDiff_left_involutive
symmDiff_left_involutive πŸ“–mathematicalβ€”Function.Involutive
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_symmDiff_cancel_right
symmDiff_left_surjective πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”Function.Involutive.surjective
symmDiff_left_involutive
symmDiff_of_ge πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”symmDiff.eq_1
sdiff_eq_bot_iff
sup_bot_eq
symmDiff_of_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”symmDiff.eq_1
sdiff_eq_bot_iff
bot_sup_eq
symmDiff_right_comm πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_assoc
symmDiff_comm
symmDiff_right_inj πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_right_injective
symmDiff_right_injective πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”Function.Involutive.injective
symmDiff_right_involutive
symmDiff_right_involutive πŸ“–mathematicalβ€”Function.Involutive
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_symmDiff_cancel_left
symmDiff_right_surjective πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”Function.Involutive.surjective
symmDiff_right_involutive
symmDiff_sdiff πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
β€”symmDiff.eq_1
sup_sdiff_distrib
sdiff_sdiff_left
symmDiff_sdiff_eq_sup πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”symmDiff.eq_1
sdiff_idem
le_antisymm
sup_le_sup
sdiff_le
sup_le
le_sdiff_sup
LE.le.trans
le_sup_right
symmDiff_sdiff_inf πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”symmDiff_sdiff
sup_of_le_left
symmDiff_sdiff_left πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
β€”symmDiff_def
sup_sdiff
sdiff_idem
sdiff_sdiff_self
bot_sup_eq
symmDiff_sdiff_right πŸ“–mathematicalβ€”GeneralizedBooleanAlgebra.toSDiff
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
β€”symmDiff_comm
symmDiff_sdiff_left
symmDiff_self πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
GeneralizedCoheytingAlgebra.toOrderBot
β€”symmDiff.eq_1
sup_idem
sdiff_self
symmDiff_snd πŸ“–mathematicalβ€”symmDiff
Prod.instMax_mathlib
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
Prod.instSDiff
GeneralizedCoheytingAlgebra.toSDiff
β€”β€”
symmDiff_sup_inf πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
symmDiff
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”le_antisymm
sup_le
symmDiff_le_sup
inf_le_sup
sup_inf_left
symmDiff.eq_1
le_inf
le_sup_right
sup_right_comm
le_sup_of_le_left
le_sdiff_sup
sup_assoc
le_sup_of_le_right
symmDiff_symmDiff_cancel_left πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_self
bot_symmDiff
symmDiff_symmDiff_cancel_right πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_assoc
symmDiff_self
symmDiff_bot
symmDiff_symmDiff_inf πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”symmDiff_sdiff_inf
sdiff_symmDiff_eq_sup
symmDiff_sup_inf
symmDiff_symmDiff_left πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”symmDiff_def
sdiff_symmDiff'
sup_comm
symmDiff_sdiff
instAssociativeMax_mathlib
instCommutativeMax_mathlib
instIdempotentOpMax_mathlib
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
symmDiff_symmDiff_right πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”symmDiff_def
sdiff_symmDiff'
sup_comm
symmDiff_sdiff
instAssociativeMax_mathlib
instCommutativeMax_mathlib
instIdempotentOpMax_mathlib
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
symmDiff_symmDiff_right' πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
Compl.compl
BooleanAlgebra.toCompl
β€”symmDiff_eq
compl_symmDiff
bihimp_eq'
inf_sup_left
inf_sup_right
sup_assoc
inf_assoc
inf_comm
inf_left_right_swap
symmDiff_symmDiff_self' πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_comm
symmDiff_symmDiff_cancel_left
symmDiff_symmDiff_symmDiff_comm πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toSDiff
β€”symmDiff_assoc
symmDiff_left_comm
symmDiff_top πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toSDiff
Top.top
BooleanAlgebra.toTop
Compl.compl
BooleanAlgebra.toCompl
β€”symmDiff_top'
symmDiff_top' πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedCoheytingAlgebra.toSDiff
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CoheytingAlgebra.toOrderTop
HNot.hnot
CoheytingAlgebra.toHNot
β€”sdiff_top
top_sdiff'
sup_of_le_right
symmDiff_triangle πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”LE.le.trans_eq
sup_le_sup
sdiff_triangle
sup_comm
sup_sup_sup_comm
symmDiff.eq_1
toDual_bihimp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
symmDiff
OrderDual.instSup
GeneralizedCoheytingAlgebra.toSDiff
OrderDual.instGeneralizedCoheytingAlgebra
β€”β€”
toDual_symmDiff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
bihimp
OrderDual.instInf
GeneralizedHeytingAlgebra.toHImp
OrderDual.instGeneralizedHeytingAlgebra
β€”β€”
top_bihimp πŸ“–mathematicalβ€”bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toHImp
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toOrderTop
β€”bihimp_comm
bihimp_top
top_symmDiff πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toSDiff
Top.top
BooleanAlgebra.toTop
Compl.compl
BooleanAlgebra.toCompl
β€”top_symmDiff'
top_symmDiff' πŸ“–mathematicalβ€”symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedCoheytingAlgebra.toSDiff
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CoheytingAlgebra.toOrderTop
HNot.hnot
CoheytingAlgebra.toHNot
β€”top_sdiff'
sdiff_top
sup_of_le_left

symmDiff

Definitions

NameCategoryTheorems
Β«term_⇔_Β» πŸ“–CompOpβ€”
Β«term_βˆ†_Β» πŸ“–CompOpβ€”

---

← Back to Index