Documentation Verification Report

Synonym

πŸ“ Source: Mathlib/Order/Synonym.lean

Statistics

MetricCount
Definitionsrec, rec, instUnique, ofDual, rec, toDual, instBEqColex, instBEqLex, instCoeFunColex, instCoeFunLex, instDecidableEqColex, instDecidableEqLex, instInhabitedColex, instInhabitedLex, instUniqueColex, instUniqueLex, ofColex, ofLex, toColex, toLex
20
Theoremsexists, forall, dual, ofDual, dual, ofDual, exists, forall, exists, ext, ext_iff, forall, instNontrivial, le_toDual, lt_toDual, ofDual_comp_toDual, ofDual_inj, ofDual_le_ofDual, ofDual_lt_ofDual, ofDual_symm_eq, ofDual_toDual, ofDual_trans_toDual, toDual_comp_ofDual, toDual_inj, toDual_le, toDual_le_toDual, toDual_lt, toDual_lt_toDual, toDual_ofDual, toDual_symm_eq, toDual_trans_ofDual, instLawfulBEqColex, instLawfulBEqLex, instNonemptyColex, instNonemptyLex, instNontrivialColex, instNontrivialLex, ofColex_inj, ofColex_symm_eq, ofColex_toColex, ofLex_inj, ofLex_symm_eq, ofLex_toLex, toColex_inj, toColex_ofColex, toColex_symm_eq, toLex_inj, toLex_ofLex, toLex_symm_eq
49
Total69

Colex

Definitions

NameCategoryTheorems
rec πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”
forall πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”

LE.le

Theorems

NameKindAssumesProvesValidatesDepends On
dual πŸ“–mathematicalβ€”OrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”OrderDual.toDual_le_toDual
ofDual πŸ“–mathematicalOrderDual
OrderDual.instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”OrderDual.ofDual_le_ofDual

LT.lt

Theorems

NameKindAssumesProvesValidatesDepends On
dual πŸ“–mathematicalβ€”OrderDual
OrderDual.instLT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”OrderDual.toDual_lt_toDual
ofDual πŸ“–mathematicalOrderDual
OrderDual.instLT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”OrderDual.ofDual_lt_ofDual

Lex

Definitions

NameCategoryTheorems
rec πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
forall πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”

OrderDual

Definitions

NameCategoryTheorems
instUnique πŸ“–CompOpβ€”
ofDual πŸ“–CompOp
292 mathmath: pow_ofDual, WithBot.ofDual_map, WithTop.map_ofDual, isSublattice_preimage_ofDual, ofDual_toAdd_zero, ofDual_le_ofDual, Set.dual_ordConnectedComponent, Order.height_ofDual, ofDual_max, LeftOrdContinuous.rightOrdContinuous_dual, MonotoneOn.dual_left, OrderIso.coe_dualDual_symm, Set.Ioi_ofDual, StrictAntiOn.dual_left, supClosed_preimage_ofDual, List.sortedGT_map_ofDual, CompleteLatticeHom.dual_symm_apply_toFun, TopologicalSpace.Closeds.complOrderIso_symm_apply, isBot_ofDual_iff, strictAntiOn_comp_ofDual_iff, strictMono_dual_iff, toDual_symm_eq, ofDual_bot, Set.dual_ordConnectedSection, SupIrred.ofDual, Set.Ioc_ofDual, OrderIso.invENNReal_symm_apply, supIrred_ofDual, ofDual_inf, isCompl_ofDual_iff, StrictAntiOn.dual, List.SortedLT.of_map_ofDual, Finset.map_ofDual_max, ofDual_iInf, CategoryTheory.Localization.LeftBousfield.galoisConnection, toDual_sInf, Finset.ofDual_inf, ofDual_min, monotoneOn_comp_ofDual_iff, OrderIso.inv_symm_apply, NonemptyInterval.coe_dual, Maximal.dual, ofDual_ofNat, IsLeast.dual, monotone_dual_iff, isBounded_preimage_ofDual, TopologicalSpace.Opens.complOrderIso_symm_apply, Finset.Ioc_ofDual, ofDual_hnot, SimpleGraph.hasseDualIso_apply, toDual_sSup, WithBot.map_ofDual, ofDual_preimage_latticeClosure, StrictMonoOn.dual_left, ofDual_smul, Fin.revOrderIso_apply, isAddLeftRegular_ofDual, strictMonoOn_dual_iff, dist_ofDual, Finset.Ioo_orderDual_def, edist_ofDual, OrderIso.dual_apply, gc_upperPolar_lowerPolar, gc_upperBounds_lowerBounds, ofDual_himp, norm_ofDual, WithBot.ofDual_apply_coe, Finset.Ioo_ofDual, infPrime_ofDual, GaloisConnection.dual, fixingAddSubmonoid_fixedPoints_gc, ofDual_pow, Interval.coe_dual, Set.Iio_toDual, WithBot.toDual_map, IsBot.ofDual, isMax_ofDual_iff, Set.Ici_ofDual, continuous_ofDual, Iio_orderDual_def, strictMono_comp_ofDual_iff, IncidenceAlgebra.mu_ofDual, IsGreatest.dual, List.sortedGE_map_ofDual, ValuationSubring.primeSpectrumOrderEquiv_apply_coe_carrier, Set.uIoo_toDual, PrimitiveSpectrum.gc_closureOperator, SupClosed.dual, ofDual_compares_ofDual, isAddRightRegular_ofDual, ext_iff, minimal_toDual, disjoint_ofDual_iff, Valuation.ofAddValuation_apply, Set.dual_ordConnected, sSupHom.dual_symm_apply_toFun, cmpLE_ofDual, sInfHom.dual_apply_toFun, NonemptyInterval.dual_mapβ‚‚, ofDual_sInf, Finset.ofDual_sup', sSupHom.dual_apply_toFun, isClosedMap_ofDual, Monotone.dual_left, CategoryTheory.ObjectProperty.galoisConnection_isColocal, Set.uIcc_ofDual, CategoryTheory.MorphismProperty.gc_llp_rlp, RightOrdContinuous.orderDual, isLowerSet_preimage_ofDual_iff, OrderIso.compl_symm_apply, Ioi_orderDual_def, StrictAnti.dual_left, Finset.Icc_orderDual_def, Concept.swapEquiv_apply, Set.Ico_toDual, ofDual_eq_one, ofDual_compl, IsTop.ofDual, codisjoint_ofDual_iff, Set.Icc_ofDual, ofDual_neg, IsGaloisGroup.ofDual_intermediateFieldEquivSubgroup_apply, Set.Ioo_ofDual, List.SortedGT.of_map_ofDual, IsGLB.dual, Antitone.dual, Fin.revOrderIso_toEquiv, ofDual_ratCast, Set.uIcc_toDual, StrictMono.dual_left, WithTop.ofDual_apply_coe, Set.Ioc_toDual, Iic_orderDual_def, maximal_toDual, gc_Ici_sInf, IsMin.ofDual, LinearMap.polar_gc, Finset.Ico_ofDual, Finset.Ioc_orderDual_def, Order.PFilter.sInf_gc, List.sortedLT_map_ofDual, antitoneOn_comp_ofDual_iff, toDual_le, WCovBy.ofDual, antitone_dual_iff, AntitoneOn.dual_left, ofDual_one, Set.Iic_toDual, ofDual_iSup, Set.dual_ordSeparatingSet, InfPrime.ofDual, gc_upperClosure_coe, WithTop.ofDual_map, isLeftRegular_ofDual, List.SortedLE.of_map_ofDual, IsGalois.intermediateFieldEquivSubgroup_symm_apply, Finset.Ioi_ofDual, Submodule.dualAnnihilator_gc, bddBelow_preimage_ofDual, BddBelow.dual, OrderIso.neg_symm_apply, MonotoneOn.dual, infClosed_preimage_ofDual, Monotone.dual, Antitone.dual_left, sInfHom.dual_symm_apply_toFun, LE.le.ofDual, Matrix.blockTriangular_transpose_iff, Set.Iic_ofDual, nhds_ofDual, Set.Ioo_toDual, ofDual_natCast, ofDual_intCast, strictAnti_dual_iff, Set.Iio_ofDual, CategoryTheory.orderDualEquivalence_counitIso, Finset.Icc_ofDual, Set.ordConnected_dual, CategoryTheory.orderDualEquivalence_functor_obj, isUpperSet_preimage_ofDual_iff, Finset.ofDual_min', IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply, StrictAnti.dual, IsLUB.dual, Finset.Iic_ofDual, BddAbove.dual, List.SortedGE.of_map_ofDual, Submodule.torsion_gc, IsCompl.ofDual, fixingSubmonoid_fixedPoints_gc, lt_toDual, isAddRegular_ofDual, ofDual_wcovBy_ofDual_iff, ofDual_toAdd_eq_top_iff, Set.Ioi_toDual, isOpenMap_ofDual, StrictMono.dual, eVariationOn.comp_ofDual, antitoneOn_dual_iff, infIrred_ofDual, isRightRegular_ofDual, toDual_trans_ofDual, Set.OrdConnected.dual, nnnorm_ofDual, TopologicalSpace.gc_generateFrom, le_toDual, toDual_lt, SetRel.gc_leftDual_rightDual, toDual_comp_ofDual, ofDual_sup, ofDual_sub, ofDual_symm_eq, fixingAddSubgroup_fixedPoints_gc, Finset.Ico_orderDual_def, Set.uIoo_ofDual, OrderIso.subLeft_symm_apply, bddAbove_preimage_ofDual, ofDual_symmDiff, ofDual_inv, fixingSubgroup_fixedPoints_gc, Finset.ofDual_inf', IsLowerSet.toDual, List.sortedLE_map_ofDual, OrderHom.dual_apply_coe, grade_ofDual, CompleteLatticeHom.dual_apply_toFun, IsUpperSet.toDual, Set.dual_ordConnected_iff, ofDual_toDual, OrderHom.dual_symm_apply_coe, OrderIso.smulRightDual_symm_apply, antitone_comp_ofDual_iff, Ici_orderDual_def, WithTop.toDual_map, InfClosed.dual, isTop_ofDual_iff, isMin_ofDual_iff, IsSublattice.dual, ofDual_bihimp, Finset.map_ofDual_min, OrderIso.divLeft_symm_apply, isCobounded_preimage_ofDual, ofDual_add, supPrime_ofDual, monotone_comp_ofDual_iff, ofDual_sSup, ofDual_trans_toDual, ofDual_vadd', CategoryTheory.ObjectProperty.galoisConnection_isLocal, isRegular_ofDual, ofDual_lt_ofDual, ofDual_comp_toDual, monotoneOn_dual_iff, ofDual_mul, Set.Ici_toDual, Set.Icc_toDual, Dense.orderDual, ofDual_inj, strictMonoOn_comp_ofDual_iff, StrictMonoOn.dual, ofDual_eq_top, CovBy.ofDual, ofDual_vadd, LT.lt.ofDual, Finset.ofDual_max', OrderIso.dual_symm_apply, AddValuation.ofValuation_apply, ofDual_covBy_ofDual_iff, ofDual_div, Order.coheight_ofDual, Finset.ofDual_sup, PrimitiveSpectrum.gc, IsMax.ofDual, ofDual_zero, SupPrime.ofDual, ofDual_eq_zero, strictAntiOn_dual_iff, cmp_ofDual, strictAnti_comp_ofDual_iff, Minimal.dual, toDual_ofDual, Finset.Iio_ofDual, Finset.Ici_ofDual, InfIrred.ofDual, ofDual_smul', Set.Ico_ofDual, nndist_ofDual, ofDual_top, IsGalois.ofDual_intermediateFieldEquivSubgroup_apply, OrderIso.dualDual_symm_apply, AntitoneOn.dual, ofDual_eq_bot
rec πŸ“–CompOpβ€”
toDual πŸ“–CompOp
356 mathmath: isBounded_preimage_toDual, isCompl_toDual_iff, WithBot.coe_toDualTopEquiv_eq, WithBot.ofDual_map, IsUpperSet.ofDual, Order.IsSuccPrelimit.dual, WithTop.toDualBotEquiv_coe, IsLowerSet.ofDual, Set.dual_ordConnectedComponent, strictAntiOn_toDual_comp_iff, isMin_toDual_iff, LeftOrdContinuous.rightOrdContinuous_dual, Set.Ioi_ofDual, Finset.uIcc_toDual, CompleteLatticeHom.dual_symm_apply_toFun, toDual_pow, Finset.Ioi_toDual, AntivaryOn.dual, isTop_toDual_iff, dist_toDual, instNeBotNhdsWithinIio, Disjoint.dual, strictMono_dual_iff, toDual_symm_eq, IsMinFilter.dual, Set.Ioc_ofDual, OrderIso.neg_apply, StrictAntiOn.dual, toDual_vadd', isUpperSet_preimage_toDual_iff, Codisjoint.dual, Antitone.dual_right, isMinOn_dual_iff, toDual_le_toDual, CategoryTheory.Localization.LeftBousfield.galoisConnection, OrderIso.subLeft_apply, toDual_sInf, OrderIso.dualAntisymmetrization_symm_apply, WCovBy.toDual, IsBot.toDual, Matrix.blockTriangular_transvection', TopologicalSpace.Opens.complOrderIso_apply, toDual_smul', Maximal.dual, Monovary.dual_left, IsLeast.dual, monotone_dual_iff, toDual_zero, isExtrFilter_dual_iff, antivaryOn_toDual_left, toDual_sSup, QuasilinearOn.dual, StrictMono.dual_right, nndist_toDual, toDual_eq_zero, AntivaryOn.dual_right, OrderIso.smulRightDual_apply, strictMonoOn_dual_iff, OrderIso.dualDual_apply, isLowerSet_preimage_toDual_iff, supPrime_toDual, Finset.toDual_min', toDual_compares_toDual, Finset.Ioo_orderDual_def, OrderIso.dual_apply, gc_upperPolar_lowerPolar, disjoint_toDual_iff, gc_upperBounds_lowerBounds, infClosed_preimage_toDual, toDual_sdiff, MonovaryOn.dual_left, toDual_inj, pow_toDual, monovary_toDual_right, IsSublattice.of_dual, IsGalois.intermediateFieldEquivSubgroup_apply, NonemptyInterval.dual_pure, OrderIso.coe_dualDual, toDual_wcovBy_toDual_iff, GaloisConnection.dual, fixingAddSubmonoid_fixedPoints_gc, Order.isPredPrelimit_toDual_iff, toDual_vadd, NonemptyInterval.fst_dual, Set.Iio_toDual, OrderIso.divLeft_apply, antitone_toDual_comp_iff, InfPrime.dual, WithBot.toDual_map, toDual_max, toDual_inv, bddBelow_preimage_toDual, Set.Ici_ofDual, Iio_orderDual_def, TopologicalSpace.Closeds.complOrderIso_apply, Antivary.dual_left, IsMax.toDual, Finset.map_toDual_max, cmp_toDual, IsGreatest.dual, antitoneOn_toDual_comp_iff, Set.uIoo_toDual, PrimitiveSpectrum.gc_closureOperator, supIrred_toDual, CategoryTheory.ComposableArrows.opEquivalence_functor_obj_map, OrderIso.sumDualDistrib_symm_inl, isClosedMap_toDual, minimal_toDual, toDual_intCast, toDual_mul, sSupHom.dual_symm_apply_toFun, monotone_toDual_comp_iff, strictAnti_toDual_comp_iff, sInfHom.dual_apply_toFun, CovBy.toDual, NonemptyInterval.dual_mapβ‚‚, ofDual_sInf, Finset.toDual_inf', toDual_compl, toDual_lt_toDual, Valuation.toAddValuation_apply, IsMaxOn.dual, sSupHom.dual_apply_toFun, CategoryTheory.ObjectProperty.galoisConnection_isColocal, Set.uIcc_ofDual, CategoryTheory.MorphismProperty.gc_llp_rlp, RightOrdContinuous.orderDual, AntitoneOn.dual_right, Ioi_orderDual_def, MonovaryOn.dual_right, monovaryOn_toDual_right, antivary_toDual_right, toDual_min, Finset.Icc_orderDual_def, Finset.Ioo_toDual, Set.Ico_toDual, Finset.map_toDual_min, WithBot.toDualTopEquiv_coe, Set.Icc_ofDual, isMax_toDual_iff, isAtom_dual_iff_isCoatom, Set.Ioo_ofDual, Order.IsSuccLimit.dual, IsGalois.intermediateFieldEquivSubgroup_symm_apply_toDual, strictMonoOn_toDual_comp_iff, isRightRegular_toDual, IsGLB.dual, Antitone.dual, isExtrOn_dual_iff, InfIrred.dual, toDual_hnot, Set.uIcc_toDual, Set.Ioc_toDual, Iic_orderDual_def, nnnorm_toDual, maximal_toDual, List.sortedLE_map_toDual, Order.IsPredLimit.dual, gc_Ici_sInf, LinearMap.polar_gc, LE.le.dual, Interval.dual_pure, WithBot.toDual_apply_coe, Finset.toDual_inf, Finset.Ioc_orderDual_def, Finset.toDual_max', Order.PFilter.sInf_gc, OrderIso.dualAntisymmetrization_apply, toDual_le, codisjoint_toDual_iff, antitone_dual_iff, Finset.Ioc_toDual, Set.Iic_toDual, ConvexOn.dual, Monotone.dual_right, Finset.Icc_toDual, Monovary.dual_right, isAddRightRegular_toDual, gc_upperClosure_coe, WithTop.ofDual_map, WithTop.map_toDual, List.SortedGT.of_map_toDual, List.SortedLT.of_map_toDual, Matrix.BlockTriangular.transpose, Submodule.dualAnnihilator_gc, Order.isPredLimit_toDual_iff, MonotoneOn.dual, toDual_sub, continuous_toDual, Monotone.dual, sInfHom.dual_symm_apply_toFun, WithBot.toDualTopEquiv_symm_coe, OrderIso.sumDualDistrib_inl, Finset.Ici_toDual, toDual_top, OrderIso.invENNReal_apply, isBot_toDual_iff, Order.PFilter.mem_mk, SupPrime.dual, Set.Iic_ofDual, Order.IsPredPrelimit.dual, Order.isSuccLimit_toDual_iff, QuasiconvexOn.dual, Set.Ioo_toDual, IsAtom.dual, exists, isAddLeftRegular_toDual, strictAnti_dual_iff, Set.Iio_ofDual, CategoryTheory.orderDualEquivalence_counitIso, OrderIso.sumDualDistrib_symm_inr, infPrime_toDual, Fin.revOrderIso_symm_apply, Finset.Iio_toDual, toDual_neg, monotoneOn_toDual_comp_iff, forall, StrictAnti.dual, IsLUB.dual, Finset.toDual_sup, fixingSubmonoid_fixedPoints_gc, WithTop.toDualBotEquiv_symm_coe, lt_toDual, StrictAnti.dual_right, infIrred_toDual, Set.Ioi_toDual, List.sortedGT_map_toDual, StrictMono.dual, antitoneOn_dual_iff, OrderIso.sumLexDualAntidistrib_symm_inl, toDual_trans_ofDual, AddValuation.toValuation_apply, instNeBotNhdsWithinIoi, List.sortedLT_map_toDual, supClosed_preimage_toDual, toDual_eq_top, TopologicalSpace.gc_generateFrom, le_toDual, toDual_lt, IsExtrFilter.dual, SetRel.gc_leftDual_rightDual, List.SortedLE.of_map_toDual, toDual_comp_ofDual, AntivaryOn.dual_left, OrderIso.inv_apply, IsGaloisGroup.intermediateFieldEquivSubgroup_apply, ofDual_symm_eq, fixingAddSubgroup_fixedPoints_gc, Finset.Ico_orderDual_def, monovary_toDual_left, OrderIso.compl_apply, Set.uIoo_ofDual, toDual_bihimp, List.sortedGE_map_toDual, norm_toDual, isMaxFilter_dual_iff, isLeftRegular_toDual, fixingSubgroup_fixedPoints_gc, antivaryOn_toDual_right, MonotoneOn.dual_right, toDual_bot, isRegular_toDual, LT.lt.dual, OrderHom.dual_apply_coe, StrictConvexOn.dual, OrderIso.sumDualDistrib_inr, CompleteLatticeHom.dual_apply_toFun, IsExtrOn.dual, antivary_toDual_left, toDual_eq_bot, Order.isSuccPrelimit_toDual_iff, Antivary.dual_right, ofDual_toDual, OrderHom.dual_symm_apply_coe, Finset.Iic_toDual, Monovary.dual, Ici_orderDual_def, QuasiconcaveOn.dual, WithTop.toDual_map, isMaxOn_dual_iff, IsCoatom.dual, IsCompl.dual, isMinFilter_dual_iff, isSublattice_preimage_toDual, SupIrred.dual, toDual_eq_one, SimpleGraph.hasseDualIso_symm_apply, toDual_symmDiff, StrictConcaveOn.dual, toDual_smul, ofDual_sSup, isAddRegular_toDual, IsMin.toDual, ofDual_trans_toDual, CategoryTheory.ObjectProperty.galoisConnection_isLocal, CategoryTheory.orderDualEquivalence_inverse_obj, edist_toDual, toDual_iInf, ofDual_comp_toDual, monotoneOn_dual_iff, toDual_sup, toDual_iSup, IsTop.toDual, toDual_ofNat, toDual_div, NonemptyInterval.snd_dual, Concept.swapEquiv_symm_apply, Set.Ici_toDual, Set.Icc_toDual, isCobounded_preimage_toDual, OrderIso.sumLexDualAntidistrib_symm_inr, IncidenceAlgebra.mu_toDual, nhds_toDual, StrictMonoOn.dual_right, OrderIso.sumLexDualAntidistrib_inr, NonemptyInterval.toDualProd_apply, toDual_ratCast, grade_toDual, StrictMonoOn.dual, ofAdd_toDual_eq_zero_iff, isCoatom_dual_iff_isAtom, toDual_natCast, strictMono_toDual_comp_iff, toDual_add, OrderIso.dual_symm_apply, bddAbove_preimage_toDual, Matrix.blockTriangular_single', OrderIso.sumLexDualAntidistrib_inl, MonovaryOn.dual, IsMinOn.dual, cmpLE_toDual, PrimitiveSpectrum.gc, toDual_covBy_toDual_iff, List.SortedGE.of_map_toDual, toDual_inf, strictAntiOn_dual_iff, monovaryOn_toDual_left, CategoryTheory.orderDualEquivalence_inverse_map, Order.height_toDual, WithTop.toDual_apply_coe, Finset.Ico_toDual, Antivary.dual, ConcaveOn.dual, WithTop.coe_toDualBotEquiv, WithBot.map_toDual, Minimal.dual, StrictAntiOn.dual_right, isOpenMap_toDual, IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply_toDual, toDual_ofDual, toDual_one, Order.coheight_toDual, IsMaxFilter.dual, Set.Ico_ofDual, Finset.toDual_sup', AntitoneOn.dual

Theorems

NameKindAssumesProvesValidatesDepends On
exists πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
β€”β€”
ext πŸ“–β€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
β€”ext
forall πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
β€”β€”
instNontrivial πŸ“–mathematicalβ€”Nontrivial
OrderDual
β€”β€”
le_toDual πŸ“–mathematicalβ€”OrderDual
instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toDual
ofDual
β€”β€”
lt_toDual πŸ“–mathematicalβ€”OrderDual
instLT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toDual
ofDual
β€”β€”
ofDual_comp_toDual πŸ“–mathematicalβ€”OrderDual
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
toDual
β€”β€”
ofDual_inj πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
β€”EquivLike.toEmbeddingLike
ofDual_le_ofDual πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLE
β€”β€”
ofDual_lt_ofDual πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLT
β€”β€”
ofDual_symm_eq πŸ“–mathematicalβ€”Equiv.symm
OrderDual
ofDual
toDual
β€”β€”
ofDual_toDual πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
toDual
β€”β€”
ofDual_trans_toDual πŸ“–mathematicalβ€”Equiv.trans
OrderDual
ofDual
toDual
Equiv.refl
β€”β€”
toDual_comp_ofDual πŸ“–mathematicalβ€”OrderDual
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toDual
ofDual
β€”β€”
toDual_inj πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
β€”EquivLike.toEmbeddingLike
toDual_le πŸ“–mathematicalβ€”OrderDual
instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toDual
ofDual
β€”β€”
toDual_le_toDual πŸ“–mathematicalβ€”OrderDual
instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toDual
β€”β€”
toDual_lt πŸ“–mathematicalβ€”OrderDual
instLT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toDual
ofDual
β€”β€”
toDual_lt_toDual πŸ“–mathematicalβ€”OrderDual
instLT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toDual
β€”β€”
toDual_ofDual πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
ofDual
β€”β€”
toDual_symm_eq πŸ“–mathematicalβ€”Equiv.symm
OrderDual
toDual
ofDual
β€”β€”
toDual_trans_ofDual πŸ“–mathematicalβ€”Equiv.trans
OrderDual
toDual
ofDual
Equiv.refl
β€”β€”

(root)

Definitions

NameCategoryTheorems
instBEqColex πŸ“–CompOp
1 mathmath: instLawfulBEqColex
instBEqLex πŸ“–CompOp
1 mathmath: instLawfulBEqLex
instCoeFunColex πŸ“–CompOpβ€”
instCoeFunLex πŸ“–CompOpβ€”
instDecidableEqColex πŸ“–CompOpβ€”
instDecidableEqLex πŸ“–CompOpβ€”
instInhabitedColex πŸ“–CompOpβ€”
instInhabitedLex πŸ“–CompOpβ€”
instUniqueColex πŸ“–CompOpβ€”
instUniqueLex πŸ“–CompOpβ€”
ofColex πŸ“–CompOp
44 mathmath: toColex_symm_eq, isLeftRegular_ofColex, toColex_ofColex, ofColex_one, Finset.Colex.le_iff_max'_mem, ofColex_div, ofColex_add, Finset.Colex.lt_iff_exists_forall_lt, isAddLeftRegular_ofColex, ofColex_vadd', pow_ofColex, ofColex_smul', isAddRegular_ofColex, Pi.ofColex_apply, DFinsupp.colex_lt_iff_of_unique, Finset.geomSum_ofColex_strictMono, ofColex_mul, ofColex_eq_zero, ofColex_inv, DFinsupp.Colex.le_iff_of_unique, Finset.Colex.ofColex_top, DFinsupp.Colex.lt_iff, Finsupp.Colex.le_iff_of_unique, ofColex_inj, ofColex_smul, Finsupp.Colex.lt_iff, ofColex_symm_eq, ofColex_vadd, isAddRightRegular_ofColex, Finset.Colex.le_def, ofColex_pow, Finset.Colex.lt_iff_max'_mem, isRightRegular_ofColex, ofColex_eq_one, Finset.Colex.toColex_image_ofColex_strictMono, ofColex_sub, Finset.Colex.le_iff_sdiff_subset_lowerClosure, ofColex_neg, ofColex_toColex, Finset.orderIsoColex_symm_apply, Finsupp.Colex.lt_iff_of_unique, ofColex_zero, Finset.Colex.ofColex_bot, isRegular_ofColex
ofLex πŸ“–CompOp
111 mathmath: DFinsupp.lex_lt_iff_of_unique, Prod.Lex.lt_iff', ofLex_symm_eq, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, Prod.Lex.compare_def, Prod.Lex.monotone_fst, ofLex_add, isRightRegular_ofLex, ofLex_ratCast, Pi.ofLex_apply, ofLex_sub, MvPolynomial.supDegree_esymmAlgHomMonomial, ofLex_intCast, Prod.Lex.monotone_fst_ofLex, HahnSeries.support_abs, HahnEmbedding.Partial.truncLT_mem_range_extendFun, Prod.Lex.prodLexAssoc_symm_apply, ofLex_vadd, DFinsupp.lex_lt_iff, HahnEmbedding.Partial.orderTop_eq_iff, ofLex_pow, HahnEmbedding.Partial.coeff_eq_of_mem, Set.PartiallyWellOrderedOn.imageProdLex, Prod.Lex.sumLexProdLexDistrib_symm_apply, ofLex_eq_one, DFinsupp.Lex.le_iff_of_unique, HahnSeries.embDomainOrderEmbedding_apply, Prod.Lex.le_iff, HahnEmbedding.IsPartial.truncLT_mem_range, toLex_ofLex, HahnSeries.order_abs, ofLex_neg, ofLex_natCast, HahnEmbedding.Partial.truncLT_mem_range_sSupFun, coe_ofLexMulEquiv, Sum.Lex.toLexRelIsoLE_symm_coe, HahnSeries.archimedeanClassMk_eq_archimedeanClassMk_iff, Prod.Lex.sumLexProdLexDistrib_apply, ofLex_toLex, HahnSeries.leadingCoeff_pos_iff, Prod.Lex.uniqueProd_apply, OrderIso.sumLexCongr_apply, MvPolynomial.supDegree_esymm, Prod.Lex.covBy_iff, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_snd, Finsupp.Lex.le_iff_of_unique, HahnEmbedding.Seed.coeff_baseEmbedding, Finsupp.lex_lt_iff_of_unique, ofLex_one, toLex_symm_eq, DFinsupp.Lex.lt_iff_of_unique, HahnSeries.archimedeanClassOrderIsoWithTop_apply, OrderMonoidHom.fstβ‚—_apply, Sum.Lex.lt_def, isAddRightRegular_ofLex, ofLex_inj, ofLex_inv, HahnEmbedding.Partial.coeff_eq_zero_of_mem, coe_ofLexAddEquiv, DFinsupp.lex_le_iff_of_unique, HahnSeries.leadingCoeff_nonneg_iff, toEquiv_ofLexMulEquiv, HahnEmbedding.Partial.orderTop_eq_finiteArchimedeanClassMk, hahnEmbedding_isOrderedModule_rat, ofLex_ofNat, HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, Finsupp.lex_le_iff_of_unique, ofLex_smul', HahnSeries.archimedeanClassMk_le_archimedeanClassMk_iff, pow_ofLex, ofLex_vadd', ofLex_smul, HahnSeries.lt_iff, Finsupp.lex_lt_iff, OrderAddMonoidHom.fstβ‚—_apply, isAddRegular_ofLex, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_fst, HahnSeries.orderTop_abs, HVertexOperator.coeff_comp, ofLex_mul, Sum.Lex.le_def, HahnEmbedding.Partial.eval_eq_truncLT, HahnSeries.finiteArchimedeanClassOrderIso_apply, Prod.Lex.prodUnique_apply, isAddLeftRegular_ofLex, HahnEmbedding.Partial.evalCoeff_eq, MvPolynomial.IsSymmetric.antitone_supDegree, isLeftRegular_ofLex, MvPolynomial.leadingCoeff_toLex, HahnSeries.leadingCoeff_neg_iff, Sum.Lex.toLexRelIsoLT_symm_coe, ofLex_div, Prod.Lex.prodLexCongr_apply, Finsupp.Lex.lt_iff, HahnEmbedding.Partial.truncLT_eval_mem_range_extendFun, isRegular_ofLex, ofLex_eq_zero, Prod.Lex.lt_iff, Prod.Lex.prodLexAssoc_apply, HahnSeries.leadingCoeff_nonpos_iff, WCovBy.fst_ofLex, Finsupp.Lex.lt_iff_of_unique, ofLex_zero, toEquiv_ofLexAddEquiv, hahnEmbedding_isOrderedAddMonoid, DFinsupp.Lex.lt_iff, HahnSeries.leadingCoeff_abs, coe_ofLexLinearEquiv, Set.PartiallyWellOrderedOn.ProdLex_iff, Prod.Lex.le_iff', hahnEmbedding_isOrderedModule
toColex πŸ“–CompOp
77 mathmath: toColex_symm_eq, Finset.Colex.toColex_le_singleton, Finset.geomSum_lt_geomSum_iff_toColex_lt_toColex, toColex_ofColex, toColex_sub, Finset.Colex.toColex_univ, Finsupp.toColex_monotone, pow_toColex, Pi.toColex_monotone, Pi.colex_asc, toColex_vadd, toColex_inv, toColex_add, Finset.Colex.toColex_lt_toColex_iff_max'_mem, Finset.Colex.cons_lt_cons, Finset.Colex.toColex_sdiff_le_toColex_sdiff', Colex.forall, Finset.Colex.toColex_strictMono, isAddRightRegular_toColex, Finset.Colex.mem_initSeg, Finset.geomSum_le_geomSum_iff_toColex_le_toColex, Finset.Colex.erase_lt_erase, Finset.Colex.erase_le_erase, Finset.Colex.toColex_le_toColex_iff_max'_mem, Finset.Colex.singleton_le_toColex, Finset.Colex.toColex_image_lt_toColex_image, toColex_eq_zero, Finset.Colex.toColex_sdiff_lt_toColex_sdiff, Finset.Colex.toColex_sdiff_le_toColex_sdiff, isRightRegular_toColex, toColex_one, Finset.Colex.lt_iff_exists_filter_lt, Finset.Colex.toColex_le_toColex, Finset.Colex.toColex_lt_singleton, Finset.Colex.singleton_lt_singleton, Pi.lt_toColex_update_self_iff, toColex_neg, toColex_smul, toColex_vadd', Finset.Colex.toColex_lt_toColex_iff_exists_forall_lt, Finset.Colex.insert_le_insert, Finset.Colex.toColex_mono, toColex_inj, Pi.toColex_apply, ofColex_symm_eq, Finset.UV.toColex_compress_lt_toColex, toColex_mul, Pi.toColex_strictMono, Pi.toColex_update_le_self_iff, Finset.Colex.toColex_lt_toColex_of_ssubset, Colex.exists, Finset.Colex.toColex_image_ofColex_strictMono, DFinsupp.toColex_monotone, isAddRegular_toColex, Finset.Colex.singleton_le_singleton, Finset.Colex.toColex_lt_toColex, Finset.Colex.toColex_image_le_toColex_image, Finset.Colex.toColex_sdiff_lt_toColex_sdiff', Finset.Colex.toColex_empty, Finsupp.Colex.single_le_iff, Finset.Colex.cons_le_cons, toColex_zero, toColex_div, Pi.le_toColex_update_self_iff, toColex_pow, isAddLeftRegular_toColex, Finsupp.Colex.single_lt_iff, ofColex_toColex, isRegular_toColex, toColex_eq_one, Finset.Colex.toColex_le_toColex_of_subset, Finset.orderIsoColex_apply, Finset.Colex.insert_lt_insert, toColex_smul', Finsupp.Colex.single_strictMono, Pi.toColex_update_lt_self_iff, isLeftRegular_toColex
toLex πŸ“–CompOp
166 mathmath: Prod.Lex.toLex_lt_toLex', toLex_sub, toLex_mul, Lex.forall, Sum.Lex.Icc_inr_inr, WithBot.orderIsoPUnitSumLex_symm_inl, isLeftRegular_toLex, Lex.exists, OrderIso.sumLexIicIoi_symm_apply_of_lt, toLex_inj, ofLex_symm_eq, Sum.Lex.Ico_inl_inl, Sum.Lex.Ico_inr_inr, MvPowerSeries.exists_finsupp_eq_lexOrder_of_ne_zero, pow_toLex, toLex_ofNat, Sum.Lex.Ioo_inl_inr, LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, toEquiv_toLexMulEquiv, DFinsupp.toLex_monotone, toLex_eq_one, Sum.Lex.inr_le_inr_iff, WithBot.orderIsoPUnitSumLex_symm_inr, OrderIso.sumLexIioIci_symm_apply_Ici, Finsupp.Lex.single_strictAnti, Sum.Lex.Iic_inr, NonemptyInterval.toLex_strictMono, MvPolynomial.supDegree_esymmAlgHomMonomial, isRegular_toLex, Sum.Lex.inr_strictMono, Prod.Lex.toLexOrderHom_coe, Prod.Lex.toLex_le_toLex', HahnEmbedding.Partial.truncLT_mem_range_extendFun, Sum.Lex.Ioo_inr_inr, toLex_vadd', Sum.Lex.inl_bot, Prod.Lex.prodLexAssoc_symm_apply, MvPowerSeries.lexOrder_def_of_ne_zero, Pi.toLex_update_le_self_iff, Sum.Lex.toLex_lt_toLex, Pi.toLex_update_lt_self_iff, OrderIso.sumLexIicIoi_symm_apply_of_le, Sum.Lex.Icc_inl_inl, Pi.le_toLex_update_self_iff, WithTop.orderIsoSumLexPUnit_toLex, Sum.Lex.inl_mono, MvPolynomial.leadingCoeff_esymmAlgHomMonomial, Prod.Lex.sumLexProdLexDistrib_symm_apply, Sum.Lex.toLexRelIsoLE_coe, WithTop.orderIsoSumLexPUnit_symm_inl, Sum.Lex.Ioi_inr, HahnSeries.embDomainOrderEmbedding_apply, OrderIso.sumLexIioIci_symm_apply_Iio, HahnEmbedding.IsPartial.truncLT_mem_range, toLex_ofLex, Sum.Lex.Ici_inl, Sum.Lex.Ioc_inl_inl, coe_toLexLinearEquiv, toLex_add, isAddLeftRegular_toLex, OrderMonoidHom.inrβ‚—_apply, Pi.lex_desc, HahnEmbedding.Partial.truncLT_mem_range_sSupFun, Sum.Lex.toLex_le_toLex, toLex_pow, Finsupp.Lex.single_lt_iff, OrderMonoidHom.inlβ‚—_mul_inrβ‚—_eq_toLex, toLex_ratCast, Sum.Lex.Ioc_inl_inr, Sum.Lex.Iio_inl, toLex_intCast, Prod.Lex.sumLexProdLexDistrib_apply, isAddRightRegular_toLex, ofLex_toLex, WithTop.orderIsoSumLexPUnit_top, toLex_zero, OrderIso.sumLexCongr_apply, MvPolynomial.supDegree_esymm, Prod.Lex.toLex_lt_toLex, Sum.Lex.Ioc_inr_inr, Finsupp.DegLex.lt_iff, MvPolynomial.leadingCoeff_toLex_C, Sum.Lex.Ioi_inl, Sum.Lex.Ioo_inl_inl, MvPolynomial.monic_esymm, isAddRegular_toLex, OrderIso.sumLexIicIoi_apply_inr, Set.PartiallyWellOrderedOn.fiberProdLex, toLex_natCast, Sum.Lex.Iic_inl, Sum.Lex.inl_strictMono, toLex_symm_eq, MvPolynomial.supDegree_toLex_C, isRightRegular_toLex, toLex_inv, OrderMonoidHom.inlβ‚—_apply, Sum.Lex.Ici_inr, Sum.Lex.inl_lt_inl_iff, OrderIso.sumLexAssoc_apply_inl_inl, toLex_vadd, OrderAddMonoidHom.inlβ‚—_apply, OrderIso.sumLexEmpty_apply_inl, OrderIso.sumLexIicIoi_apply_inl, Sum.Lex.Ico_inl_inr, Sum.Lex.Iio_inr, Sum.Lex.toLexRelIsoLT_coe, Pi.toLex_apply, OrderAddMonoidHom.inlβ‚—_add_inrβ‚—_eq_toLex, Pi.lt_toLex_update_self_iff, WithBot.orderIsoPUnitSumLex_toLex, HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, toLex_smul', Prod.Lex.toLex_mono, OrderIso.emptySumLex_apply_inr, Sum.Lex.inl_lt_inr, Finsupp.Lex.single_antitone, OrderIso.sumLexIioIci_symm_apply_of_ge, Prod.Lex.toLex_covBy_toLex_iff, coe_toLexMulEquiv, Prod.Lex.toLex_strictMono, NonemptyInterval.toLex_mono, MonomialOrder.lex_lt_iff, OrderIso.sumLexIioIci_apply_inl, Sum.Lex.inr_mono, WithTop.orderIsoSumLexPUnit_symm_inr, OrderIso.sumLexAssoc_apply_inr, NonemptyInterval.toLex_lt_toLex, Sum.Lex.not_inr_le_inl, Finsupp.DegLex.le_iff, HahnEmbedding.Partial.eval_eq_truncLT, toEquiv_toLexAddEquiv, toLex_eq_zero, MonomialOrder.lex_le_iff, toLex_div, MvPolynomial.IsSymmetric.antitone_supDegree, Sum.Lex.inr_top, MvPolynomial.leadingCoeff_toLex, Prod.Lex.toLex_le_toLex, MvPowerSeries.lexOrder_le_of_coeff_ne_zero, Finsupp.toLex_monotone, Sum.Lex.toLex_strictMono, Prod.Lex.prodLexCongr_apply, Sum.Lex.inr_lt_inr_iff, Finsupp.Lex.single_le_iff, HahnEmbedding.Partial.truncLT_eval_mem_range_extendFun, OrderAddMonoidHom.inrβ‚—_apply, Finsupp.DegLex.lt_def, Prod.Lex.prodLexAssoc_apply, Sum.Lex.Icc_inl_inr, HahnEmbedding.Partial.apply_of_mem_stratum, toLex_smul, toLex_one, coe_toLexAddEquiv, OrderIso.sumLexIioIci_apply_inr, OrderIso.sumLexIioIci_symm_apply_of_lt, OrderIso.sumLexAssoc_apply_inl_inr, Sum.Lex.toLex_mono, Pi.toLex_strictMono, NonemptyInterval.toLex_le_toLex, toLex_neg, Sum.Lex.not_inr_lt_inl, WithBot.orderIsoPUnitSumLex_bot, Set.PartiallyWellOrderedOn.ProdLex_iff, Sum.Lex.inl_le_inr, Sum.Lex.inl_le_inl_iff, Pi.toLex_monotone

Theorems

NameKindAssumesProvesValidatesDepends On
instLawfulBEqColex πŸ“–mathematicalβ€”Colex
instBEqColex
β€”β€”
instLawfulBEqLex πŸ“–mathematicalβ€”Lex
instBEqLex
β€”β€”
instNonemptyColex πŸ“–mathematicalβ€”Colexβ€”β€”
instNonemptyLex πŸ“–mathematicalβ€”Lexβ€”β€”
instNontrivialColex πŸ“–mathematicalβ€”Nontrivial
Colex
β€”β€”
instNontrivialLex πŸ“–mathematicalβ€”Nontrivial
Lex
β€”β€”
ofColex_inj πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
β€”EquivLike.toEmbeddingLike
ofColex_symm_eq πŸ“–mathematicalβ€”Equiv.symm
Colex
ofColex
toColex
β€”β€”
ofColex_toColex πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
toColex
β€”β€”
ofLex_inj πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”EquivLike.toEmbeddingLike
ofLex_symm_eq πŸ“–mathematicalβ€”Equiv.symm
Lex
ofLex
toLex
β€”β€”
ofLex_toLex πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
toLex
β€”β€”
toColex_inj πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”EquivLike.toEmbeddingLike
toColex_ofColex πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
ofColex
β€”β€”
toColex_symm_eq πŸ“–mathematicalβ€”Equiv.symm
Colex
toColex
ofColex
β€”β€”
toLex_inj πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”EquivLike.toEmbeddingLike
toLex_ofLex πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
ofLex
β€”β€”
toLex_symm_eq πŸ“–mathematicalβ€”Equiv.symm
Lex
toLex
ofLex
β€”β€”

---

← Back to Index