| Name | Category | Theorems |
ToType 📖 | CompOp | 1 mathmath: type_toType
|
instInhabited 📖 | CompOp | — |
instLinearOrderToType 📖 | CompOp | 1 mathmath: type_toType
|
instOne 📖 | CompOp | 4 mathmath: instZeroLEOneClass, type_of_unique, type_eq_one, instNeZeroOfNat
|
instOrderBot 📖 | CompOp | 1 mathmath: bot_eq_zero
|
instPreorder 📖 | CompOp | 9 mathmath: type_le_type, instZeroLEOneClass, type_lt_type, not_lt_zero, type_le_type_iff, zero_le, bot_eq_zero, pos_iff_ne_zero, OrderEmbedding.type_le_type
|
instSetoid 📖 | CompOp | — |
instZero 📖 | CompOp | 8 mathmath: instZeroLEOneClass, type_of_isEmpty, type_eq_zero, not_lt_zero, instNeZeroOfNat, zero_le, bot_eq_zero, pos_iff_ne_zero
|
liftOn 📖 | CompOp | 1 mathmath: liftOn_type
|
liftOn₂ 📖 | CompOp | 1 mathmath: liftOn₂_type
|
omega0 📖 | CompOp | 1 mathmath: type_nat
|
termω 📖 | CompOp | — |
type 📖 | CompOp | 17 mathmath: type_le_type, type_of_unique, liftOn_type, type_lex_prod, type_of_isEmpty, OrderIso.type_congr, type_eq_one, type_eq_zero, type_eq_type, type_lt_type, type_le_type_iff, liftOn₂_type, type_lex_sum, type_congr, OrderEmbedding.type_le_type, type_toType, type_nat
|