Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Order/UpperLower/Basic.lean

Statistics

MetricCount
Definitions0
TheoremsIic_subset, Iio_subset, bot_mem, bot_notMem, compl, eq_empty_or_Iic, eq_univ_or_Iio, erase, image, inter, isUpperSet_preimage_coe, lowerBounds_subset, not_bddBelow, ofDual, ordConnected, preimage, sdiff, sdiff_of_isUpperSet, toDual, top_mem, total, union, Ici_subset, Ioi_subset, bot_mem, compl, eq_empty_or_Ici, eq_univ_or_Ioi, erase, image, inter, isLowerSet_preimage_coe, not_bddAbove, ofDual, ordConnected, preimage, sdiff, sdiff_of_isLowerSet, toDual, top_mem, top_notMem, total, union, upperBounds_subset, image_Ici, image_Iic, image_Iio, image_Ioi, antitone_mem, monotone_mem, isLowerSet_Iic, isLowerSet_Iio, isLowerSet_compl, isLowerSet_empty, isLowerSet_iInter, isLowerSet_iInterβ‚‚, isLowerSet_iUnion, isLowerSet_iUnionβ‚‚, isLowerSet_iff_Iic_subset, isLowerSet_iff_Iio_subset, isLowerSet_iff_forall_lt, isLowerSet_preimage_ofDual_iff, isLowerSet_preimage_toDual_iff, isLowerSet_sInter, isLowerSet_sUnion, isLowerSet_setOf, isLowerSet_univ, isUpperSet_Ici, isUpperSet_Ioi, isUpperSet_compl, isUpperSet_empty, isUpperSet_iInter, isUpperSet_iInterβ‚‚, isUpperSet_iUnion, isUpperSet_iUnionβ‚‚, isUpperSet_iff_Ici_subset, isUpperSet_iff_Ioi_subset, isUpperSet_iff_forall_lt, isUpperSet_preimage_ofDual_iff, isUpperSet_preimage_toDual_iff, isUpperSet_sInter, isUpperSet_sUnion, isUpperSet_setOf, isUpperSet_univ, not_bddAbove_Ici, not_bddAbove_Ioi, not_bddBelow_Iic, not_bddBelow_Iio
88
Total88

IsLowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
Iic_subset πŸ“–mathematicalIsLowerSet
Preorder.toLE
Set
Set.instMembership
Set.instHasSubset
Set.Iic
β€”isLowerSet_iff_Iic_subset
Iio_subset πŸ“–mathematicalIsLowerSet
Preorder.toLE
Set
Set.instMembership
Set.instHasSubset
Set.Iio
β€”IsUpperSet.Ioi_subset
toDual
bot_mem πŸ“–mathematicalIsLowerSet
Preorder.toLE
Set
Set.instMembership
Bot.bot
OrderBot.toBot
Set.Nonempty
β€”bot_le
bot_notMem πŸ“–mathematicalIsLowerSet
Preorder.toLE
Set
Set.instMembership
Bot.bot
OrderBot.toBot
Set.instEmptyCollection
β€”Iff.not
bot_mem
Set.not_nonempty_iff_eq_empty
compl πŸ“–mathematicalIsLowerSetIsUpperSet
Compl.compl
Set
Set.instCompl
β€”β€”
eq_empty_or_Iic πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instEmptyCollection
Set.Iic
β€”IsUpperSet.eq_empty_or_Ici
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
eq_univ_or_Iio πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.univ
Set.Iio
β€”compl_inj_iff
Set.compl_univ
Set.compl_Iio
IsUpperSet.eq_empty_or_Ici
compl
erase πŸ“–mathematicalIsLowerSetSet
Set.instSDiff
Set.instSingletonSet
β€”sdiff
Set.mem_singleton_iff
image πŸ“–mathematicalIsLowerSet
Preorder.toLE
Set.image
DFunLike.coe
OrderIso
instFunLikeOrderIso
β€”Equiv.image_eq_preimage_symm
preimage
OrderIso.monotone
inter πŸ“–mathematicalIsLowerSetSet
Set.instInter
β€”β€”
isUpperSet_preimage_coe πŸ“–mathematicalIsLowerSetIsUpperSet
Set.Elem
Set
Set.instMembership
Set.preimage
β€”Set.mem_preimage
lowerBounds_subset πŸ“–mathematicalIsLowerSet
Preorder.toLE
Set.Nonempty
Set
Set.instHasSubset
lowerBounds
β€”β€”
not_bddBelow πŸ“–mathematicalIsLowerSet
Preorder.toLE
Set.Nonempty
BddBelowβ€”NoMinOrder.exists_lt
LT.lt.not_ge
LE.le.trans
LT.lt.le
ofDual πŸ“–mathematicalIsLowerSet
OrderDual
OrderDual.instLE
IsUpperSet
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”isUpperSet_preimage_toDual_iff
ordConnected πŸ“–mathematicalIsLowerSet
Preorder.toLE
Set.OrdConnectedβ€”HasSubset.Subset.trans
Set.instIsTransSubset
Set.Icc_subset_Iic_self
Iic_subset
preimage πŸ“–mathematicalIsLowerSet
Preorder.toLE
Monotone
Set.preimageβ€”β€”
sdiff πŸ“–mathematicalIsLowerSet
Set
Set.instMembership
Set.instSDiffβ€”β€”
sdiff_of_isUpperSet πŸ“–mathematicalIsLowerSet
IsUpperSet
Set
Set.instSDiff
β€”sdiff
toDual πŸ“–mathematicalIsLowerSetIsUpperSet
OrderDual
OrderDual.instLE
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”isUpperSet_preimage_ofDual_iff
top_mem πŸ“–mathematicalIsLowerSet
Preorder.toLE
Set
Set.instMembership
Top.top
OrderTop.toTop
Set.univ
β€”Set.eq_univ_of_forall
le_top
Set.mem_univ
total πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instHasSubset
β€”Set.not_subset
le_total
union πŸ“–mathematicalIsLowerSetSet
Set.instUnion
β€”β€”

IsUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
Ici_subset πŸ“–mathematicalIsUpperSet
Preorder.toLE
Set
Set.instMembership
Set.instHasSubset
Set.Ici
β€”isUpperSet_iff_Ici_subset
Ioi_subset πŸ“–mathematicalIsUpperSet
Preorder.toLE
Set
Set.instMembership
Set.instHasSubset
Set.Ioi
β€”HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ioi_subset_Ici_self
Ici_subset
bot_mem πŸ“–mathematicalIsUpperSet
Preorder.toLE
Set
Set.instMembership
Bot.bot
OrderBot.toBot
Set.univ
β€”Set.eq_univ_of_forall
bot_le
Set.mem_univ
compl πŸ“–mathematicalIsUpperSetIsLowerSet
Compl.compl
Set
Set.instCompl
β€”β€”
eq_empty_or_Ici πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instEmptyCollection
Set.Ici
β€”Set.nonempty_iff_ne_empty
wellFounded_lt
Set.ext
WellFounded.min_le
WellFounded.min_mem
eq_univ_or_Ioi πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.univ
Set.Ioi
β€”IsLowerSet.eq_univ_or_Iio
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
erase πŸ“–mathematicalIsUpperSetSet
Set.instSDiff
Set.instSingletonSet
β€”sdiff
image πŸ“–mathematicalIsUpperSet
Preorder.toLE
Set.image
DFunLike.coe
OrderIso
instFunLikeOrderIso
β€”Equiv.image_eq_preimage_symm
preimage
OrderIso.monotone
inter πŸ“–mathematicalIsUpperSetSet
Set.instInter
β€”β€”
isLowerSet_preimage_coe πŸ“–mathematicalIsUpperSetIsLowerSet
Set.Elem
Set
Set.instMembership
Set.preimage
β€”β€”
not_bddAbove πŸ“–mathematicalIsUpperSet
Preorder.toLE
Set.Nonempty
BddAboveβ€”NoMaxOrder.exists_gt
LT.lt.not_ge
LE.le.trans
LT.lt.le
ofDual πŸ“–mathematicalIsUpperSet
OrderDual
OrderDual.instLE
IsLowerSet
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”isLowerSet_preimage_toDual_iff
ordConnected πŸ“–mathematicalIsUpperSet
Preorder.toLE
Set.OrdConnectedβ€”HasSubset.Subset.trans
Set.instIsTransSubset
Set.Icc_subset_Ici_self
Ici_subset
preimage πŸ“–mathematicalIsUpperSet
Preorder.toLE
Monotone
Set.preimageβ€”β€”
sdiff πŸ“–mathematicalIsUpperSet
Set
Set.instMembership
Set.instSDiffβ€”β€”
sdiff_of_isLowerSet πŸ“–mathematicalIsUpperSet
IsLowerSet
Set
Set.instSDiff
β€”sdiff
toDual πŸ“–mathematicalIsUpperSetIsLowerSet
OrderDual
OrderDual.instLE
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”isLowerSet_preimage_ofDual_iff
top_mem πŸ“–mathematicalIsUpperSet
Preorder.toLE
Set
Set.instMembership
Top.top
OrderTop.toTop
Set.Nonempty
β€”le_top
top_notMem πŸ“–mathematicalIsUpperSet
Preorder.toLE
Set
Set.instMembership
Top.top
OrderTop.toTop
Set.instEmptyCollection
β€”Iff.not
top_mem
Set.not_nonempty_iff_eq_empty
total πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instHasSubset
β€”le_total
union πŸ“–mathematicalIsUpperSetSet
Set.instUnion
β€”β€”
upperBounds_subset πŸ“–mathematicalIsUpperSet
Preorder.toLE
Set.Nonempty
Set
Set.instHasSubset
upperBounds
β€”β€”

OrderEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
image_Ici πŸ“–mathematicalIsUpperSet
Preorder.toLE
Set.range
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
Set.image
Set.Ici
β€”preimage_Ici
Set.image_preimage_eq_inter_range
Set.inter_eq_left
IsUpperSet.Ici_subset
Set.mem_range_self
image_Iic πŸ“–mathematicalIsLowerSet
Preorder.toLE
Set.range
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
Set.image
Set.Iic
β€”image_Ici
image_Iio πŸ“–mathematicalIsLowerSet
Preorder.toLE
Set.range
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
Set.image
Set.Iio
β€”image_Ioi
image_Ioi πŸ“–mathematicalIsUpperSet
Preorder.toLE
Set.range
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
Set.image
Set.Ioi
β€”preimage_Ioi
Set.image_preimage_eq_inter_range
Set.inter_eq_left
IsUpperSet.Ioi_subset
Set.mem_range_self

Set

Theorems

NameKindAssumesProvesValidatesDepends On
antitone_mem πŸ“–mathematicalβ€”Antitone
PartialOrder.toPreorder
Prop.partialOrder
Set
instMembership
IsLowerSet
Preorder.toLE
β€”forall_swap
monotone_mem πŸ“–mathematicalβ€”Monotone
PartialOrder.toPreorder
Prop.partialOrder
Set
instMembership
IsUpperSet
Preorder.toLE
β€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isLowerSet_Iic πŸ“–mathematicalβ€”IsLowerSet
Preorder.toLE
Set.Iic
β€”le_trans
isLowerSet_Iio πŸ“–mathematicalβ€”IsLowerSet
Preorder.toLE
Set.Iio
β€”lt_of_le_of_lt
isLowerSet_compl πŸ“–mathematicalβ€”IsLowerSet
Compl.compl
Set
Set.instCompl
IsUpperSet
β€”compl_compl
IsLowerSet.compl
IsUpperSet.compl
isLowerSet_empty πŸ“–mathematicalβ€”IsLowerSet
Set
Set.instEmptyCollection
β€”β€”
isLowerSet_iInter πŸ“–mathematicalIsLowerSetSet.iInterβ€”isLowerSet_sInter
Set.forall_mem_range
isLowerSet_iInterβ‚‚ πŸ“–mathematicalIsLowerSetSet.iInterβ€”isLowerSet_iInter
isLowerSet_iUnion πŸ“–mathematicalIsLowerSetSet.iUnionβ€”isLowerSet_sUnion
Set.forall_mem_range
isLowerSet_iUnionβ‚‚ πŸ“–mathematicalIsLowerSetSet.iUnionβ€”isLowerSet_iUnion
isLowerSet_iff_Iic_subset πŸ“–mathematicalβ€”IsLowerSet
Preorder.toLE
Set
Set.instHasSubset
Set.Iic
β€”forall_swap
isLowerSet_iff_Iio_subset πŸ“–mathematicalβ€”IsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.instHasSubset
Set.Iio
β€”forall_swap
isLowerSet_iff_forall_lt πŸ“–mathematicalβ€”IsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.instMembership
β€”le_iff_eq_or_lt'
isLowerSet_preimage_ofDual_iff πŸ“–mathematicalβ€”IsLowerSet
OrderDual
OrderDual.instLE
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
IsUpperSet
β€”β€”
isLowerSet_preimage_toDual_iff πŸ“–mathematicalβ€”IsLowerSet
Set.preimage
OrderDual
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
IsUpperSet
OrderDual.instLE
β€”β€”
isLowerSet_sInter πŸ“–mathematicalIsLowerSetSet.sInterβ€”forallβ‚‚_imp
isLowerSet_sUnion πŸ“–mathematicalIsLowerSetSet.sUnionβ€”β€”
isLowerSet_setOf πŸ“–mathematicalβ€”IsLowerSet
Preorder.toLE
setOf
Antitone
PartialOrder.toPreorder
Prop.partialOrder
β€”forall_swap
isLowerSet_univ πŸ“–mathematicalβ€”IsLowerSet
Set.univ
β€”β€”
isUpperSet_Ici πŸ“–mathematicalβ€”IsUpperSet
Preorder.toLE
Set.Ici
β€”ge_trans
isUpperSet_Ioi πŸ“–mathematicalβ€”IsUpperSet
Preorder.toLE
Set.Ioi
β€”lt_of_lt_of_le
isUpperSet_compl πŸ“–mathematicalβ€”IsUpperSet
Compl.compl
Set
Set.instCompl
IsLowerSet
β€”compl_compl
IsUpperSet.compl
IsLowerSet.compl
isUpperSet_empty πŸ“–mathematicalβ€”IsUpperSet
Set
Set.instEmptyCollection
β€”β€”
isUpperSet_iInter πŸ“–mathematicalIsUpperSetSet.iInterβ€”isUpperSet_sInter
Set.forall_mem_range
isUpperSet_iInterβ‚‚ πŸ“–mathematicalIsUpperSetSet.iInterβ€”isUpperSet_iInter
isUpperSet_iUnion πŸ“–mathematicalIsUpperSetSet.iUnionβ€”isUpperSet_sUnion
Set.forall_mem_range
isUpperSet_iUnionβ‚‚ πŸ“–mathematicalIsUpperSetSet.iUnionβ€”isUpperSet_iUnion
isUpperSet_iff_Ici_subset πŸ“–mathematicalβ€”IsUpperSet
Preorder.toLE
Set
Set.instHasSubset
Set.Ici
β€”forall_swap
isUpperSet_iff_Ioi_subset πŸ“–mathematicalβ€”IsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.instHasSubset
Set.Ioi
β€”forall_swap
isUpperSet_iff_forall_lt πŸ“–mathematicalβ€”IsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.instMembership
β€”β€”
isUpperSet_preimage_ofDual_iff πŸ“–mathematicalβ€”IsUpperSet
OrderDual
OrderDual.instLE
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
IsLowerSet
β€”β€”
isUpperSet_preimage_toDual_iff πŸ“–mathematicalβ€”IsUpperSet
Set.preimage
OrderDual
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
IsLowerSet
OrderDual.instLE
β€”β€”
isUpperSet_sInter πŸ“–mathematicalIsUpperSetSet.sInterβ€”forallβ‚‚_imp
isUpperSet_sUnion πŸ“–mathematicalIsUpperSetSet.sUnionβ€”β€”
isUpperSet_setOf πŸ“–mathematicalβ€”IsUpperSet
Preorder.toLE
setOf
Monotone
PartialOrder.toPreorder
Prop.partialOrder
β€”β€”
isUpperSet_univ πŸ“–mathematicalβ€”IsUpperSet
Set.univ
β€”β€”
not_bddAbove_Ici πŸ“–mathematicalβ€”BddAbove
Preorder.toLE
Set.Ici
β€”IsUpperSet.not_bddAbove
isUpperSet_Ici
Set.nonempty_Ici
not_bddAbove_Ioi πŸ“–mathematicalβ€”BddAbove
Preorder.toLE
Set.Ioi
β€”IsUpperSet.not_bddAbove
isUpperSet_Ioi
Set.nonempty_Ioi
not_bddBelow_Iic πŸ“–mathematicalβ€”BddBelow
Preorder.toLE
Set.Iic
β€”IsLowerSet.not_bddBelow
isLowerSet_Iic
Set.nonempty_Iic
not_bddBelow_Iio πŸ“–mathematicalβ€”BddBelow
Preorder.toLE
Set.Iio
β€”IsLowerSet.not_bddBelow
isLowerSet_Iio
Set.nonempty_Iio

---

← Back to Index