Documentation Verification Report

CompleteLattice

πŸ“ Source: Mathlib/Order/UpperLower/CompleteLattice.lean

Statistics

MetricCount
DefinitionsCompleteLattice, compl, completeLattice, completelyDistribLattice, instBot, instCompleteLinearOrder, instInfSet, instInhabited, instLinearOrder, instMax, instMin, instPartialOrder, instSetLike, instSupSet, instTop, map, compl, completeLattice, completelyDistribLattice, instBot, instCompleteLinearOrder, instInfSet, instInhabited, instLinearOrder, instMax, instMin, instPartialOrder, instSetLike, instSupSet, instTop, map, upperSetIsoLowerSet
32
Theoremscarrier_eq_coe, coe_bot, coe_compl, coe_eq_empty, coe_eq_univ, coe_iInf, coe_iInfβ‚‚, coe_iSup, coe_iSupβ‚‚, coe_inf, coe_map, coe_mk, coe_nonempty, coe_sInf, coe_sSup, coe_ssubset_coe, coe_subset_coe, coe_sup, coe_top, compl_bot, compl_compl, compl_iInf, compl_iInfβ‚‚, compl_iSup, compl_iSupβ‚‚, compl_inf, compl_le_compl, compl_map, compl_sInf, compl_sSup, compl_sup, compl_top, disjoint_coe, ext, ext_iff, instIsConcreteLE, lower, map_map, map_refl, mem_compl_iff, mem_iInf_iff, mem_iInfβ‚‚_iff, mem_iSup_iff, mem_iSupβ‚‚_iff, mem_inf_iff, mem_map, mem_mk, mem_sInf_iff, mem_sSup_iff, mem_sup_iff, mem_top, notMem_bot, symm_map, total_le, carrier_eq_coe, codisjoint_coe, coe_bot, coe_compl, coe_eq_empty, coe_eq_univ, coe_iInf, coe_iInfβ‚‚, coe_iSup, coe_iSupβ‚‚, coe_inf, coe_map, coe_mk, coe_nonempty, coe_sInf, coe_sSup, coe_ssubset_coe, coe_subset_coe, coe_sup, coe_top, compl_bot, compl_compl, compl_iInf, compl_iInfβ‚‚, compl_iSup, compl_iSupβ‚‚, compl_inf, compl_le_compl, compl_map, compl_sInf, compl_sSup, compl_sup, compl_top, ext, ext_iff, map_map, map_refl, mem_bot, mem_compl_iff, mem_iInf_iff, mem_iInfβ‚‚_iff, mem_iSup_iff, mem_iSupβ‚‚_iff, mem_inf_iff, mem_map, mem_mk, mem_sInf_iff, mem_sSup_iff, mem_sup_iff, notMem_top, symm_map, total_le, upper, upperSetIsoLowerSet_apply, upperSetIsoLowerSet_symm_apply
109
Total141

LowerSet

Definitions

NameCategoryTheorems
compl πŸ“–CompOp
17 mathmath: mem_compl_iff, compl_map, compl_iInf, compl_iInfβ‚‚, compl_iSupβ‚‚, compl_inf, upperSetIsoLowerSet_symm_apply, UpperSet.compl_compl, compl_top, compl_le_compl, compl_compl, compl_iSup, coe_compl, compl_sSup, compl_sInf, compl_bot, compl_sup
completeLattice πŸ“–CompOp
6 mathmath: OrderEmbedding.supIrredLowerSet_apply, OrderIso.supIrredLowerSet_symm_apply, supIrred_iff_of_finite, OrderIso.supIrredLowerSet_apply, OrderEmbedding.supIrredLowerSet_surjective, supIrred_Iic
completelyDistribLattice πŸ“–CompOp
2 mathmath: disjoint_coe, disjoint_prod
instBot πŸ“–CompOp
14 mathmath: bot_prod, bot_lt_Iic, Iio_bot, coe_eq_empty, lowerClosure_eq_bot_iff, lowerClosure_empty, Iio_eq_bot, prod_eq_bot, notMem_bot, prod_le_prod_iff, prod_bot, UpperSet.compl_bot, compl_bot, coe_bot
instCompleteLinearOrder πŸ“–CompOpβ€”
instInfSet πŸ“–CompOp
17 mathmath: compl_iInf, compl_iInfβ‚‚, Iic_iInf, coe_iicsInfHom, mem_iInfβ‚‚_iff, iicsInfHom_apply, coe_sInf, Iic_iInfβ‚‚, coe_iInfβ‚‚, coe_iInf, Iic_sInf, mem_sInf_iff, compl_sInf, UpperSet.compl_iInf, UpperSet.compl_iInfβ‚‚, UpperSet.compl_sInf, mem_iInf_iff
instInhabited πŸ“–CompOpβ€”
instLinearOrder πŸ“–CompOpβ€”
instMax πŸ“–CompOp
11 mathmath: lowerClosure_union, sup_prod, UpperSet.compl_sup, Iic_sup_erase, coe_sup, lowerClosure_sup_sdiff, erase_sup_Iic, prod_sup, sdiff_sup_lowerClosure, compl_sup, mem_sup_iff
instMin πŸ“–CompOp
11 mathmath: inf_prod, mem_inf_iff, lowerClosure_infs, compl_inf, coe_inf, iicInfHom_apply, UpperSet.compl_inf, prod_inf_prod, coe_iicInfHom, prod_inf, Iic_inf
instPartialOrder πŸ“–CompOp
39 mathmath: OrderEmbedding.supIrredLowerSet_apply, map_Iio, compl_map, erase_le, coe_subset_coe, upperSetIsoLowerSet_apply, prod_self_lt_prod_self, sdiff_le_left, disjoint_coe, lowerClosure_image, Iio_strictMono, bot_lt_Iic, coe_map, total_le, OrderIso.supIrredLowerSet_symm_apply, upperSetIsoLowerSet_symm_apply, sdiff_lt_left, symm_map, coe_ssubset_coe, Iic_strictMono, disjoint_prod, OrderIso.supIrredLowerSet_apply, Iic_le, OrderEmbedding.supIrredLowerSet_surjective, mem_map, compl_le_compl, erase_lt, lowerClosure_le, prod_self_le_prod_self, prod_le_prod_iff, map_refl, UpperSet.compl_map, OrderEmbedding.birkhoffSet_apply, instIsConcreteLE, map_Iic, gc_lowerClosure_coe, map_map, lowerClosure_mono, UpperSet.compl_le_compl
instSetLike πŸ“–CompOp
97 mathmath: mem_compl_iff, coe_eq_univ, mem_iSup_iff, IsOpen.lowerClosure, mem_inf_iff, coe_mk, coe_subset_coe, subset_lowerClosure, disjoint_coe, Topology.IsLowerSet.nhdsKer_eq_lowerClosure, coe_sdiff, IsClosed.lowerClosure_pi, IsClopen.lowerClosure_pi, coe_eq_empty, coe_map, Topology.IsScott.lowerClosure_subset_closure, lowerClosure_interior_subset', sdiff_eq_left, coe_Iio, Topology.IsUpper.isClosed_lowerClosure, OrderIso.supIrredLowerSet_symm_apply, coe_sSup, coe_iSup, sdiff_lt_left, mem_lowerClosure, coe_ssubset_coe, coe_sub, mem_top, coe_sup, mem_iInfβ‚‚_iff, coe_top, lowerClosure_eq_Iic_csSup, lowerClosure_interior_subset, coe_sInf, UpperSet.coe_compl, Topology.IsUpperSet.closure_eq_lowerClosure, coe_erase, coe_inf, coe_prod, Iic_le, coe_Iic, coe_iInfβ‚‚, coe_iInf, lowerClosure_add, coe_lowerClosure, mem_iSupβ‚‚_iff, mem_map, IsAntichain.maximal_mem_lowerClosure_iff_mem, mem_Iio_iff, Matroid.setOf_indep_eq, IsLowerSet.lowerClosure, erase_lt, add_lowerClosure, ordConnected_iff_upperClosure_inter_lowerClosure, upperBounds_lowerClosure, mem_Iic_iff, lowerClosure_le, mem_sInf_iff, ext_iff, BddAbove.lowerClosure, notMem_bot, Set.OrdConnected.upperClosure_inter_lowerClosure, coe_compl, IsUpperSet.disjoint_lowerClosure_left, Set.Finite.lowerClosure, coe_add, coe_div, OrderEmbedding.birkhoffSet_apply, lowerClosure_min, instIsConcreteLE, UpperSet.mem_compl_iff, lowerClosure_mul, coe_iSupβ‚‚, Finset.Colex.le_iff_sdiff_subset_lowerClosure, coe_nonempty, mem_mk, HasUpperLowerClosure.isOpen_lowerClosure, mul_lowerClosure, Topology.IsLowerSet.nhdsSet_eq_principal_lowerClosure, UpperSet.coe_sdiff, lower, mem_prod, gc_lowerClosure_coe, lowerClosure, IsUpperSet.disjoint_lowerClosure_right, Order.Ideal.coe_toLowerSet, carrier_eq_coe, lowerClosure_eq, closure_lowerClosure_comm_pi, coe_bot, mem_sSup_iff, coe_mul, UpperSet.coe_erase, mem_iInf_iff, erase_eq, bddAbove_lowerClosure, mem_sup_iff
instSupSet πŸ“–CompOp
15 mathmath: iSup_Iic, mem_iSup_iff, UpperSet.compl_sSup, compl_iSupβ‚‚, coe_sSup, UpperSet.compl_iSupβ‚‚, coe_iSup, UpperSet.compl_iSup, mem_iSupβ‚‚_iff, lowerClosure_sUnion, compl_iSup, lowerClosure_iUnion, compl_sSup, coe_iSupβ‚‚, mem_sSup_iff
instTop πŸ“–CompOp
11 mathmath: coe_eq_univ, lowerClosure_eq_top_iff, Iic_top, lowerClosure_univ, mem_top, coe_top, UpperSet.compl_top, top_prod_top, compl_top, Order.Ideal.top_toLowerSet, lowerClosure_eq_top
map πŸ“–CompOp
10 mathmath: map_Iio, compl_map, lowerClosure_image, coe_map, symm_map, mem_map, map_refl, UpperSet.compl_map, map_Iic, map_map

Theorems

NameKindAssumesProvesValidatesDepends On
carrier_eq_coe πŸ“–mathematicalβ€”carrier
SetLike.coe
LowerSet
instSetLike
β€”β€”
coe_bot πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
Bot.bot
instBot
Set
Set.instEmptyCollection
β€”β€”
coe_compl πŸ“–mathematicalβ€”SetLike.coe
UpperSet
UpperSet.instSetLike
compl
Compl.compl
Set
Set.instCompl
LowerSet
instSetLike
β€”β€”
coe_eq_empty πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
Set
Set.instEmptyCollection
Bot.bot
instBot
β€”β€”
coe_eq_univ πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
Set.univ
Top.top
instTop
β€”β€”
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
coe_iInfβ‚‚ πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
iInf
instInfSet
Set.iInter
β€”coe_iInf
coe_iSup πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
iSup
instSupSet
Set.iUnion
β€”Set.iUnion_congr_Prop
Set.iUnion_exists
Set.iUnion_iUnion_eq'
coe_iSupβ‚‚ πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
iSup
instSupSet
Set.iUnion
β€”coe_iSup
coe_inf πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
instMin
Set
Set.instInter
β€”β€”
coe_map πŸ“–mathematicalβ€”SetLike.coe
LowerSet
Preorder.toLE
instSetLike
DFunLike.coe
OrderIso
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
Set.image
β€”β€”
coe_mk πŸ“–mathematicalIsLowerSetSetLike.coe
LowerSet
instSetLike
β€”β€”
coe_nonempty πŸ“–mathematicalβ€”Set.Nonempty
SetLike.coe
LowerSet
instSetLike
β€”Set.nonempty_iff_ne_empty
Iff.not
coe_eq_empty
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
coe_sSup πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
SupSet.sSup
instSupSet
Set.iUnion
Set
Set.instMembership
β€”β€”
coe_ssubset_coe πŸ“–mathematicalβ€”Set
Set.instHasSSubset
SetLike.coe
LowerSet
instSetLike
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
β€”β€”
coe_subset_coe πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
LowerSet
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”β€”
coe_sup πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
instMax
Set
Set.instUnion
β€”β€”
coe_top πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
Top.top
instTop
Set.univ
β€”β€”
compl_bot πŸ“–mathematicalβ€”compl
Bot.bot
LowerSet
instBot
UpperSet
UpperSet.instBot
β€”UpperSet.ext
Set.compl_empty
compl_compl πŸ“–mathematicalβ€”UpperSet.compl
compl
β€”ext
compl_compl
compl_iInf πŸ“–mathematicalβ€”compl
iInf
LowerSet
instInfSet
UpperSet
UpperSet.instInfSet
β€”UpperSet.ext
coe_iInf
Set.compl_iInter
UpperSet.coe_iInf
compl_iInfβ‚‚ πŸ“–mathematicalβ€”compl
iInf
LowerSet
instInfSet
UpperSet
UpperSet.instInfSet
β€”compl_iInf
compl_iSup πŸ“–mathematicalβ€”compl
iSup
LowerSet
instSupSet
UpperSet
UpperSet.instSupSet
β€”UpperSet.ext
coe_iSup
Set.compl_iUnion
UpperSet.coe_iSup
compl_iSupβ‚‚ πŸ“–mathematicalβ€”compl
iSup
LowerSet
instSupSet
UpperSet
UpperSet.instSupSet
β€”compl_iSup
compl_inf πŸ“–mathematicalβ€”compl
LowerSet
instMin
UpperSet
UpperSet.instMin
β€”UpperSet.ext
compl_inf
compl_le_compl πŸ“–mathematicalβ€”UpperSet
Preorder.toLE
PartialOrder.toPreorder
UpperSet.instPartialOrder
compl
LowerSet
instPartialOrder
β€”Set.compl_subset_compl
compl_map πŸ“–mathematicalβ€”compl
Preorder.toLE
DFunLike.coe
OrderIso
LowerSet
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
UpperSet
UpperSet.instPartialOrder
UpperSet.map
β€”SetLike.coe_injective
Set.image_compl_eq
OrderIso.bijective
compl_sInf πŸ“–mathematicalβ€”compl
InfSet.sInf
LowerSet
instInfSet
iInf
UpperSet
UpperSet.instInfSet
Set
Set.instMembership
β€”UpperSet.ext
Set.compl_iInterβ‚‚
UpperSet.coe_iInfβ‚‚
Set.iUnion_congr_Prop
compl_sSup πŸ“–mathematicalβ€”compl
SupSet.sSup
LowerSet
instSupSet
iSup
UpperSet
UpperSet.instSupSet
Set
Set.instMembership
β€”UpperSet.ext
Set.compl_iUnionβ‚‚
UpperSet.coe_iSupβ‚‚
Set.iInter_congr_Prop
compl_sup πŸ“–mathematicalβ€”compl
LowerSet
instMax
UpperSet
UpperSet.instMax
β€”UpperSet.ext
compl_sup
compl_top πŸ“–mathematicalβ€”compl
Top.top
LowerSet
instTop
UpperSet
UpperSet.instTop
β€”UpperSet.ext
Set.compl_univ
disjoint_coe πŸ“–mathematicalβ€”Disjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
LowerSet
instSetLike
instPartialOrder
CompletelyDistribLattice.toCompleteDistribLattice
completelyDistribLattice
β€”β€”
ext πŸ“–β€”SetLike.coe
LowerSet
instSetLike
β€”β€”SetLike.ext'
ext_iff πŸ“–mathematicalβ€”SetLike.coe
LowerSet
instSetLike
β€”ext
instIsConcreteLE πŸ“–mathematicalβ€”IsConcreteLE
LowerSet
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”β€”
lower πŸ“–mathematicalβ€”IsLowerSet
SetLike.coe
LowerSet
instSetLike
β€”lower'
map_map πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
LowerSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
OrderIso.trans
β€”ext
Set.ext
map_refl πŸ“–mathematicalβ€”map
OrderIso.refl
Preorder.toLE
LowerSet
PartialOrder.toPreorder
instPartialOrder
β€”OrderIso.ext
ext
Set.ext
mem_compl_iff πŸ“–mathematicalβ€”UpperSet
SetLike.instMembership
UpperSet.instSetLike
compl
LowerSet
instSetLike
β€”β€”
mem_iInf_iff πŸ“–mathematicalβ€”LowerSet
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”SetLike.mem_coe
coe_iInf
Set.mem_iInter
mem_iInfβ‚‚_iff πŸ“–mathematicalβ€”LowerSet
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”β€”
mem_iSup_iff πŸ“–mathematicalβ€”LowerSet
SetLike.instMembership
instSetLike
iSup
instSupSet
β€”SetLike.mem_coe
coe_iSup
Set.mem_iUnion
mem_iSupβ‚‚_iff πŸ“–mathematicalβ€”LowerSet
SetLike.instMembership
instSetLike
iSup
instSupSet
β€”β€”
mem_inf_iff πŸ“–mathematicalβ€”LowerSet
SetLike.instMembership
instSetLike
instMin
β€”β€”
mem_map πŸ“–mathematicalβ€”LowerSet
Preorder.toLE
SetLike.instMembership
instSetLike
DFunLike.coe
OrderIso
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
OrderIso.symm
β€”OrderIso.symm_symm
symm_map
mem_mk πŸ“–mathematicalIsLowerSetLowerSet
SetLike.instMembership
instSetLike
Set
Set.instMembership
β€”β€”
mem_sInf_iff πŸ“–mathematicalβ€”LowerSet
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
mem_sSup_iff πŸ“–mathematicalβ€”LowerSet
SetLike.instMembership
instSetLike
SupSet.sSup
instSupSet
Set
Set.instMembership
β€”Set.mem_iUnionβ‚‚
mem_sup_iff πŸ“–mathematicalβ€”LowerSet
SetLike.instMembership
instSetLike
instMax
β€”β€”
mem_top πŸ“–mathematicalβ€”LowerSet
SetLike.instMembership
instSetLike
Top.top
instTop
β€”β€”
notMem_bot πŸ“–mathematicalβ€”LowerSet
SetLike.instMembership
instSetLike
Bot.bot
instBot
β€”β€”
symm_map πŸ“–mathematicalβ€”OrderIso.symm
LowerSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
β€”OrderIso.ext
ext
Set.ext
total_le πŸ“–mathematicalβ€”LowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instPartialOrder
β€”IsLowerSet.total
lower

UpperSet

Definitions

NameCategoryTheorems
compl πŸ“–CompOp
17 mathmath: compl_sup, upperSetIsoLowerSet_apply, compl_sSup, compl_iSupβ‚‚, compl_compl, coe_compl, compl_iSup, compl_top, LowerSet.compl_compl, compl_map, compl_inf, compl_iInf, compl_bot, mem_compl_iff, compl_iInfβ‚‚, compl_sInf, compl_le_compl
completeLattice πŸ“–CompOp
6 mathmath: OrderEmbedding.infIrredUpperSet_surjective, OrderIso.infIrredUpperSet_symm_apply, OrderEmbedding.infIrredUpperSet_apply, infIrred_Ici, OrderIso.infIrredUpperSet_apply, infIrred_iff_of_finite
completelyDistribLattice πŸ“–CompOp
2 mathmath: codisjoint_coe, codisjoint_prod
instBot πŸ“–CompOp
10 mathmath: coe_eq_univ, upperClosure_univ, upperClosure_eq_bot_iff, compl_bot, bot_prod_bot, LowerSet.compl_bot, Ici_bot, coe_bot, mem_bot, upperClosure_eq_bot
instCompleteLinearOrder πŸ“–CompOpβ€”
instInfSet πŸ“–CompOp
15 mathmath: LowerSet.compl_iInf, mem_sInf_iff, LowerSet.compl_iInfβ‚‚, coe_iInfβ‚‚, mem_iInf_iff, coe_iInf, upperClosure_sUnion, LowerSet.compl_sInf, compl_iInf, coe_sInf, upperClosure_iUnion, compl_iInfβ‚‚, compl_sInf, mem_iInfβ‚‚_iff, iInf_Ici
instInhabited πŸ“–CompOpβ€”
instLinearOrder πŸ“–CompOpβ€”
instMax πŸ“–CompOp
11 mathmath: compl_sup, upperClosure_sups, mem_sup_iff, Ici_sup, coe_iciSupHom, sup_prod, iciSupHom_apply, coe_sup, prod_sup_prod, LowerSet.compl_sup, prod_sup
instMin πŸ“–CompOp
11 mathmath: Ici_inf_erase, mem_inf_iff, coe_inf, LowerSet.compl_inf, erase_inf_Ici, prod_inf, upperClosure_inf_sdiff, sdiff_inf_upperClosure, compl_inf, inf_prod, upperClosure_union
instPartialOrder πŸ“–CompOp
49 mathmath: LowerSet.compl_map, MulArchimedeanClass.subgroup_strictAntiOn, ArchimedeanClass.addSubgroup_antitone, upperClosure_image, upperSetIsoLowerSet_apply, OrderEmbedding.infIrredUpperSet_surjective, Ici_lt_top, mem_map, map_map, coe_ssubset_coe, OrderIso.infIrredUpperSet_symm_apply, MulArchimedeanClass.subsemigroup_strictAnti, codisjoint_coe, prod_le_prod_iff, map_refl, upperSetIsoLowerSet_symm_apply, symm_map, OrderEmbedding.infIrredUpperSet_apply, le_Ici, FiniteArchimedeanClass.subsemigroup_eq_addSubgroup, map_Ici, lt_sdiff_left, LowerSet.compl_le_compl, ArchimedeanClass.subsemigroup_strictAnti, gc_upperClosure_coe, OrderIso.infIrredUpperSet_apply, prod_self_le_prod_self, le_erase, prod_self_lt_prod_self, map_Ioi, FiniteArchimedeanClass.addSubgroup_strictAnti, Ioi_strictMono, le_upperClosure, MulArchimedeanClass.subgroup_antitone, compl_map, ArchimedeanClass.addSubgroup_strictAntiOn, FiniteArchimedeanClass.submodule_strictAnti, coe_map, FiniteMulArchimedeanClass.subsemigroup_eq_subgroup, Ici_le_Ioi, le_sdiff_left, codisjoint_prod, coe_subset_coe, FiniteMulArchimedeanClass.subgroup_strictAnti, lt_erase, total_le, upperClosure_anti, compl_le_compl, Ici_strictMono
instSetLike πŸ“–CompOp
101 mathmath: mem_Ioi_iff, coe_Ici, erase_eq, LowerSet.mem_compl_iff, coe_one, ClopenUpperSet.coe_toUpperSet, upperClosure_eq, mem_inf_iff, BddBelow.upperClosure, FiniteArchimedeanClass.mem_addSubgroup_iff, mem_sInf_iff, bddBelow_upperClosure, Topology.IsUpperSet.nhdsKer_eq_upperClosure, sdiff_eq_left, coe_add, IsClosed.upperClosure, carrier_eq_coe, IsUpperSet.upperClosure, LowerSet.coe_sdiff, mem_iSup_iff, IsClopen.upperClosure_pi, mem_map, Topology.IsLowerSet.closure_eq_upperClosure, coe_inf, subset_upperClosure, coe_ssubset_coe, add_upperClosure, ext_iff, coe_eq_empty, upperClosure_interior_subset', OrderIso.infIrredUpperSet_symm_apply, coe_div, MulArchimedeanClass.mem_subgroup_iff, codisjoint_coe, upperClosure_interior_subset, mem_sup_iff, notMem_top, coe_prod, Topology.IsLower.isClosed_upperClosure, mem_Ici_iff, coe_mk, PrimitiveSpectrum.hull_finsetInf, upperClosure_mul, closure_upperClosure_comm_pi, lowerBounds_upperClosure, coe_iInfβ‚‚, mem_sSup_iff, coe_eq_univ, coe_compl, le_Ici, upperClosure_min, LowerSet.coe_erase, ArchimedeanClass.mem_addSubgroup_iff, mem_iInf_iff, coe_mul, IsAntichain.minimal_mem_upperClosure_iff_mem, lt_sdiff_left, upperClosure, IsOpen.upperClosure, coe_zero, Topology.IsUpperSet.nhdsSet_eq_principal_upperClosure, PrimitiveSpectrum.preimage_upperClosure_compl_finset, gc_upperClosure_coe, coe_top, coe_iSup, mem_iSupβ‚‚_iff, FiniteMulArchimedeanClass.mem_subgroup_iff, ordConnected_iff_upperClosure_inter_lowerClosure, mem_mk, coe_iInf, IsLowerSet.disjoint_upperClosure_left, coe_sub, IsLowerSet.disjoint_upperClosure_right, HasUpperLowerClosure.isOpen_upperClosure, coe_iSupβ‚‚, coe_nonempty, mem_prod, coe_upperClosure, coe_sup, upperClosure_add, Set.OrdConnected.upperClosure_inter_lowerClosure, LowerSet.coe_compl, le_upperClosure, upper, coe_map, coe_Ioi, mem_compl_iff, coe_sInf, mul_upperClosure, coe_sSup, coe_sdiff, Set.Finite.upperClosure, coe_subset_coe, IsClosed.upperClosure_pi, lt_erase, mem_iInfβ‚‚_iff, coe_bot, coe_erase, mem_bot, mem_upperClosure, upperClosure_eq_Ici_csInf
instSupSet πŸ“–CompOp
17 mathmath: mem_iSup_iff, compl_sSup, Ici_iSup, LowerSet.compl_iSupβ‚‚, compl_iSupβ‚‚, Ici_sSup, mem_sSup_iff, compl_iSup, coe_icisSupHom, icisSupHom_apply, coe_iSup, mem_iSupβ‚‚_iff, LowerSet.compl_iSup, coe_iSupβ‚‚, LowerSet.compl_sSup, coe_sSup, Ici_iSupβ‚‚
instTop πŸ“–CompOp
20 mathmath: MulArchimedeanClass.subgroup_strictAntiOn, Ici_lt_top, coe_eq_empty, Ioi_top, prod_le_prod_iff, notMem_top, prod_top, top_prod, Ioi_eq_top, upperClosure_eq_top_iff, compl_top, ArchimedeanClass.addSubgroup_eq_bot, LowerSet.compl_top, upperClosure_empty, coe_top, FiniteMulArchimedeanClass.subgroup_eq_bot, ArchimedeanClass.addSubgroup_strictAntiOn, MulArchimedeanClass.subgroup_eq_bot, FiniteArchimedeanClass.addSubgroup_eq_bot, prod_eq_top
map πŸ“–CompOp
10 mathmath: LowerSet.compl_map, upperClosure_image, mem_map, map_map, map_refl, symm_map, map_Ici, map_Ioi, compl_map, coe_map

Theorems

NameKindAssumesProvesValidatesDepends On
carrier_eq_coe πŸ“–mathematicalβ€”carrier
SetLike.coe
UpperSet
instSetLike
β€”β€”
codisjoint_coe πŸ“–mathematicalβ€”Codisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instOrderTop
SetLike.coe
UpperSet
instSetLike
Disjoint
instPartialOrder
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompletelyDistribLattice.toCompleteDistribLattice
completelyDistribLattice
β€”β€”
coe_bot πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
Bot.bot
instBot
Set.univ
β€”β€”
coe_compl πŸ“–mathematicalβ€”SetLike.coe
LowerSet
LowerSet.instSetLike
compl
Compl.compl
Set
Set.instCompl
UpperSet
instSetLike
β€”β€”
coe_eq_empty πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
Set
Set.instEmptyCollection
Top.top
instTop
β€”β€”
coe_eq_univ πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
Set.univ
Bot.bot
instBot
β€”β€”
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
iInf
instInfSet
Set.iUnion
β€”Set.iUnion_congr_Prop
Set.iUnion_exists
Set.iUnion_iUnion_eq'
coe_iInfβ‚‚ πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
iInf
instInfSet
Set.iUnion
β€”coe_iInf
coe_iSup πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
iSup
instSupSet
Set.iInter
β€”Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
coe_iSupβ‚‚ πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
iSup
instSupSet
Set.iInter
β€”coe_iSup
coe_inf πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
instMin
Set
Set.instUnion
β€”β€”
coe_map πŸ“–mathematicalβ€”SetLike.coe
UpperSet
Preorder.toLE
instSetLike
DFunLike.coe
OrderIso
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
Set.image
β€”β€”
coe_mk πŸ“–mathematicalIsUpperSetSetLike.coe
UpperSet
instSetLike
β€”β€”
coe_nonempty πŸ“–mathematicalβ€”Set.Nonempty
SetLike.coe
UpperSet
instSetLike
β€”Set.nonempty_iff_ne_empty
Iff.not
coe_eq_empty
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
InfSet.sInf
instInfSet
Set.iUnion
Set
Set.instMembership
β€”β€”
coe_sSup πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
SupSet.sSup
instSupSet
Set.iInter
Set
Set.instMembership
β€”β€”
coe_ssubset_coe πŸ“–mathematicalβ€”Set
Set.instHasSSubset
SetLike.coe
UpperSet
instSetLike
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
β€”β€”
coe_subset_coe πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
UpperSet
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”β€”
coe_sup πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
instMax
Set
Set.instInter
β€”β€”
coe_top πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
Top.top
instTop
Set
Set.instEmptyCollection
β€”β€”
compl_bot πŸ“–mathematicalβ€”compl
Bot.bot
UpperSet
instBot
LowerSet
LowerSet.instBot
β€”LowerSet.ext
Set.compl_univ
compl_compl πŸ“–mathematicalβ€”LowerSet.compl
compl
β€”ext
compl_compl
compl_iInf πŸ“–mathematicalβ€”compl
iInf
UpperSet
instInfSet
LowerSet
LowerSet.instInfSet
β€”LowerSet.ext
coe_iInf
Set.compl_iUnion
LowerSet.coe_iInf
compl_iInfβ‚‚ πŸ“–mathematicalβ€”compl
iInf
UpperSet
instInfSet
LowerSet
LowerSet.instInfSet
β€”compl_iInf
compl_iSup πŸ“–mathematicalβ€”compl
iSup
UpperSet
instSupSet
LowerSet
LowerSet.instSupSet
β€”LowerSet.ext
coe_iSup
Set.compl_iInter
LowerSet.coe_iSup
compl_iSupβ‚‚ πŸ“–mathematicalβ€”compl
iSup
UpperSet
instSupSet
LowerSet
LowerSet.instSupSet
β€”compl_iSup
compl_inf πŸ“–mathematicalβ€”compl
UpperSet
instMin
LowerSet
LowerSet.instMin
β€”LowerSet.ext
compl_sup
compl_le_compl πŸ“–mathematicalβ€”LowerSet
Preorder.toLE
PartialOrder.toPreorder
LowerSet.instPartialOrder
compl
UpperSet
instPartialOrder
β€”Set.compl_subset_compl
compl_map πŸ“–mathematicalβ€”compl
Preorder.toLE
DFunLike.coe
OrderIso
UpperSet
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
LowerSet
LowerSet.instPartialOrder
LowerSet.map
β€”SetLike.coe_injective
Set.image_compl_eq
OrderIso.bijective
compl_sInf πŸ“–mathematicalβ€”compl
InfSet.sInf
UpperSet
instInfSet
iInf
LowerSet
LowerSet.instInfSet
Set
Set.instMembership
β€”LowerSet.ext
Set.compl_iUnionβ‚‚
LowerSet.coe_iInfβ‚‚
Set.iInter_congr_Prop
compl_sSup πŸ“–mathematicalβ€”compl
SupSet.sSup
UpperSet
instSupSet
iSup
LowerSet
LowerSet.instSupSet
Set
Set.instMembership
β€”LowerSet.ext
Set.compl_iInterβ‚‚
LowerSet.coe_iSupβ‚‚
Set.iUnion_congr_Prop
compl_sup πŸ“–mathematicalβ€”compl
UpperSet
instMax
LowerSet
LowerSet.instMax
β€”LowerSet.ext
compl_inf
compl_top πŸ“–mathematicalβ€”compl
Top.top
UpperSet
instTop
LowerSet
LowerSet.instTop
β€”LowerSet.ext
Set.compl_empty
ext πŸ“–β€”SetLike.coe
UpperSet
instSetLike
β€”β€”SetLike.ext'
ext_iff πŸ“–mathematicalβ€”SetLike.coe
UpperSet
instSetLike
β€”ext
map_map πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
OrderIso.trans
β€”ext
Set.ext
map_refl πŸ“–mathematicalβ€”map
OrderIso.refl
Preorder.toLE
UpperSet
PartialOrder.toPreorder
instPartialOrder
β€”OrderIso.ext
ext
Set.ext
mem_bot πŸ“–mathematicalβ€”UpperSet
SetLike.instMembership
instSetLike
Bot.bot
instBot
β€”β€”
mem_compl_iff πŸ“–mathematicalβ€”LowerSet
SetLike.instMembership
LowerSet.instSetLike
compl
UpperSet
instSetLike
β€”β€”
mem_iInf_iff πŸ“–mathematicalβ€”UpperSet
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”SetLike.mem_coe
coe_iInf
Set.mem_iUnion
mem_iInfβ‚‚_iff πŸ“–mathematicalβ€”UpperSet
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”β€”
mem_iSup_iff πŸ“–mathematicalβ€”UpperSet
SetLike.instMembership
instSetLike
iSup
instSupSet
β€”SetLike.mem_coe
coe_iSup
Set.mem_iInter
mem_iSupβ‚‚_iff πŸ“–mathematicalβ€”UpperSet
SetLike.instMembership
instSetLike
iSup
instSupSet
β€”β€”
mem_inf_iff πŸ“–mathematicalβ€”UpperSet
SetLike.instMembership
instSetLike
instMin
β€”β€”
mem_map πŸ“–mathematicalβ€”UpperSet
Preorder.toLE
SetLike.instMembership
instSetLike
DFunLike.coe
OrderIso
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
OrderIso.symm
β€”OrderIso.symm_symm
symm_map
mem_mk πŸ“–mathematicalIsUpperSetUpperSet
SetLike.instMembership
instSetLike
Set
Set.instMembership
β€”β€”
mem_sInf_iff πŸ“–mathematicalβ€”UpperSet
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
Set
Set.instMembership
β€”Set.mem_iUnionβ‚‚
mem_sSup_iff πŸ“–mathematicalβ€”UpperSet
SetLike.instMembership
instSetLike
SupSet.sSup
instSupSet
β€”Set.mem_iInterβ‚‚
mem_sup_iff πŸ“–mathematicalβ€”UpperSet
SetLike.instMembership
instSetLike
instMax
β€”β€”
notMem_top πŸ“–mathematicalβ€”UpperSet
SetLike.instMembership
instSetLike
Top.top
instTop
β€”β€”
symm_map πŸ“–mathematicalβ€”OrderIso.symm
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
β€”OrderIso.ext
ext
Set.ext
total_le πŸ“–mathematicalβ€”UpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instPartialOrder
β€”IsUpperSet.total
upper
upper πŸ“–mathematicalβ€”IsUpperSet
SetLike.coe
UpperSet
instSetLike
β€”upper'

(root)

Definitions

NameCategoryTheorems
CompleteLattice πŸ“–CompDataβ€”
upperSetIsoLowerSet πŸ“–CompOp
2 mathmath: upperSetIsoLowerSet_apply, upperSetIsoLowerSet_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
upperSetIsoLowerSet_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
UpperSet
LowerSet
Preorder.toLE
PartialOrder.toPreorder
UpperSet.instPartialOrder
LowerSet.instPartialOrder
RelIso.instFunLike
upperSetIsoLowerSet
UpperSet.compl
β€”β€”
upperSetIsoLowerSet_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
LowerSet
UpperSet
Preorder.toLE
PartialOrder.toPreorder
LowerSet.instPartialOrder
UpperSet.instPartialOrder
RelIso.instFunLike
RelIso.symm
upperSetIsoLowerSet
LowerSet.compl
β€”β€”

---

← Back to Index