Documentation Verification Report

Fibration

๐Ÿ“ Source: Mathlib/Order/UpperLower/Fibration.lean

Statistics

MetricCount
DefinitionsFibration, Fibration
2
Theoremsimage_fibration, image_fibration, isLowerSet_image, isUpperSet_image, fibration_iff_image_Ici, fibration_iff_image_Iic, fibration_iff_isLowerSet_image, fibration_iff_isLowerSet_image_Iic, fibration_iff_isUpperSet_image, fibration_iff_isUpperSet_image_Ici
10
Total12

HomotopicalAlgebra

Definitions

NameCategoryTheorems
Fibration ๐Ÿ“–CompData
29 mathmath: fibration_op_iff, instFibrationFstOfIsStableUnderBaseChangeFibrations, isFibrant_iff_of_isTerminal, instFibrationFstOfIsFibrant, instFibrationOppositeOpOfCofibration, cofibration_op_iff, fibration_iff, PathObject.instFibrationPโ‚€, instFibrationPCofibrationsTrivialFibrations, CofibrantObject.instFibrationPResolutionObj, instFibrationOfIsWeakFactorizationSystemCofibrationsTrivialFibrationsOfIsIso, Cylinder.IsVeryGood.fibration_ฯ€, FibrantBrownFactorization.fibration_r, instFibrationUnopOfCofibrationOpposite, PathObject.instFibrationPโ‚, instFibrationLeftDiscretePUnitOfOver, instFibrationPTrivialCofibrationsFibrations, fibration_unop_iff, mem_trivialFibrations_iff, isFibrant_iff, cofibration_unop_iff, instFibrationSndOfIsFibrant, instFibrationMapOfIsWeakFactorizationSystemTrivialCofibrationsFibrations_1, CofibrantObject.HoCat.exists_resolution, SSet.modelCategoryQuillen.fibration_iff, instFibrationSndOfIsStableUnderBaseChangeFibrations, PathObject.IsGood.fibration_p, instFibrationCompOfIsStableUnderCompositionFibrations, fibrations_over_iff

IsLowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
image_fibration ๐Ÿ“–mathematicalRelation.Fibration
IsLowerSet
Set.imageโ€”Relation.Fibration.isLowerSet_image

IsUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
image_fibration ๐Ÿ“–mathematicalRelation.Fibration
IsUpperSet
Set.imageโ€”Relation.Fibration.isUpperSet_image

Relation

Definitions

NameCategoryTheorems
Fibration ๐Ÿ“–MathDef
9 mathmath: antisymmetrization_fibration, fibration_iff_isLowerSet_image, fibration_iff_isUpperSet_image, DFinsupp.lex_fibration, fibration_iff_image_Ici, cutExpand_fibration, fibration_iff_isLowerSet_image_Iic, fibration_iff_image_Iic, fibration_iff_isUpperSet_image_Ici

Theorems

NameKindAssumesProvesValidatesDepends On
fibration_iff_image_Ici ๐Ÿ“–mathematicalMonotoneFibration
Preorder.toLE
Set.image
Set.Ici
โ€”fibration_iff_image_Iic
Monotone.dual
fibration_iff_image_Iic ๐Ÿ“–mathematicalMonotoneFibration
Preorder.toLE
Set.image
Set.Iic
โ€”le_antisymm
IsLowerSet.Iic_subset
Fibration.isLowerSet_image
isLowerSet_Iic
le_rfl
fibration_iff_isLowerSet_image_Iic
fibration_iff_isLowerSet_image ๐Ÿ“–mathematicalโ€”Fibration
Preorder.toLE
IsLowerSet
Set.image
โ€”Fibration.isLowerSet_image
fibration_iff_isLowerSet_image_Iic
isLowerSet_Iic
fibration_iff_isLowerSet_image_Iic ๐Ÿ“–mathematicalโ€”Fibration
Preorder.toLE
IsLowerSet
Set.image
Set.Iic
โ€”IsLowerSet.image_fibration
isLowerSet_Iic
le_rfl
fibration_iff_isUpperSet_image ๐Ÿ“–mathematicalโ€”Fibration
Preorder.toLE
IsUpperSet
Set.image
โ€”fibration_iff_isLowerSet_image
fibration_iff_isUpperSet_image_Ici ๐Ÿ“–mathematicalโ€”Fibration
Preorder.toLE
IsUpperSet
Set.image
Set.Ici
โ€”fibration_iff_isLowerSet_image_Iic

Relation.Fibration

Theorems

NameKindAssumesProvesValidatesDepends On
isLowerSet_image ๐Ÿ“–mathematicalRelation.Fibration
IsLowerSet
Set.imageโ€”โ€”
isUpperSet_image ๐Ÿ“–mathematicalRelation.Fibration
IsUpperSet
Set.imageโ€”isLowerSet_image

---

โ† Back to Index