Principal
π Source: Mathlib/Order/UpperLower/Principal.lean
Statistics
| Metric | Count |
|---|---|
| 4 | |
TheoremsIic_iInf, Iic_iInfβ, Iic_inf, Iic_inj, Iic_injective, Iic_le, Iic_ne_Iic, Iic_ne_bot, Iic_sInf, Iic_strictMono, Iic_top, Iio_bot, Iio_eq_bot, Iio_strictMono, Ioi_le_Ici, bot_lt_Iic, coe_Iic, coe_Iio, map_Iic, map_Iio, mem_Iic_iff, mem_Iio_iff, Ici_bot, Ici_iSup, Ici_iSupβ, Ici_inj, Ici_injective, Ici_le_Ioi, Ici_lt_top, Ici_ne_Ici, Ici_ne_top, Ici_sSup, Ici_strictMono, Ici_sup, Ioi_eq_top, Ioi_strictMono, Ioi_top, coe_Ici, coe_Ioi, le_Ici, map_Ici, map_Ioi, mem_Ici_iff, mem_Ioi_iff | 44 |
| Total | 48 |
LowerSet
Definitions
| Name | Category | Theorems |
|---|---|---|
Iic π | CompOp | 31 mathmath:iSup_Iic, OrderEmbedding.supIrredLowerSet_apply, Iic_inj, Iic_top, lowerClosure_singleton, bot_lt_Iic, Iic_sup_erase, Iic_iInf, Order.Ideal.principal_toLowerSet, Iic_one, Iic_injective, coe_iicsInfHom, supIrred_iff_of_finite, iicsInfHom_apply, erase_sup_Iic, Iic_strictMono, OrderIso.supIrredLowerSet_apply, Iic_iInfβ, Iic_le, coe_Iic, iicInfHom_apply, mem_Iic_iff, Iic_sInf, coe_iicInfHom, Iic_prod, map_Iic, Iic_inf, supIrred_Iic, Iic_zero, UpperSet.coe_erase, Ici_prod_Ici |
Iio π | CompOp |
Theorems
UpperSet
Definitions
| Name | Category | Theorems |
|---|---|---|
Ici π | CompOp | 31 mathmath:coe_Ici, Ici_injective, Ici_inf_erase, Ici_zero, Ici_lt_top, Ici_iSup, upperClosure_singleton, Ici_sup, Ici_sSup, mem_Ici_iff, OrderEmbedding.infIrredUpperSet_apply, Ici_prod_Ici, coe_iciSupHom, infIrred_Ici, le_Ici, erase_inf_Ici, LowerSet.coe_erase, map_Ici, coe_icisSupHom, Ici_one, icisSupHom_apply, iciSupHom_apply, OrderIso.infIrredUpperSet_apply, infIrred_iff_of_finite, Ici_le_Ioi, Ici_bot, Ici_inj, Ici_prod, iInf_Ici, Ici_iSupβ, Ici_strictMono |
Ioi π | CompOp |
Theorems
---