Documentation Verification Report

Principal

πŸ“ Source: Mathlib/Order/UpperLower/Principal.lean

Statistics

MetricCount
DefinitionsIic, Iio, Ici, Ioi
4
TheoremsIic_iInf, Iic_iInfβ‚‚, Iic_inf, Iic_inj, Iic_injective, Iic_le, Iic_ne_Iic, Iic_ne_bot, Iic_sInf, Iic_strictMono, Iic_top, Iio_bot, Iio_eq_bot, Iio_strictMono, Ioi_le_Ici, bot_lt_Iic, coe_Iic, coe_Iio, map_Iic, map_Iio, mem_Iic_iff, mem_Iio_iff, Ici_bot, Ici_iSup, Ici_iSupβ‚‚, Ici_inj, Ici_injective, Ici_le_Ioi, Ici_lt_top, Ici_ne_Ici, Ici_ne_top, Ici_sSup, Ici_strictMono, Ici_sup, Ioi_eq_top, Ioi_strictMono, Ioi_top, coe_Ici, coe_Ioi, le_Ici, map_Ici, map_Ioi, mem_Ici_iff, mem_Ioi_iff
44
Total48

LowerSet

Definitions

NameCategoryTheorems
Iic πŸ“–CompOp
31 mathmath: iSup_Iic, OrderEmbedding.supIrredLowerSet_apply, Iic_inj, Iic_top, lowerClosure_singleton, bot_lt_Iic, Iic_sup_erase, Iic_iInf, Order.Ideal.principal_toLowerSet, Iic_one, Iic_injective, coe_iicsInfHom, supIrred_iff_of_finite, iicsInfHom_apply, erase_sup_Iic, Iic_strictMono, OrderIso.supIrredLowerSet_apply, Iic_iInfβ‚‚, Iic_le, coe_Iic, iicInfHom_apply, mem_Iic_iff, Iic_sInf, coe_iicInfHom, Iic_prod, map_Iic, Iic_inf, supIrred_Iic, Iic_zero, UpperSet.coe_erase, Ici_prod_Ici
Iio πŸ“–CompOp
6 mathmath: map_Iio, Iio_strictMono, Iio_bot, coe_Iio, Iio_eq_bot, mem_Iio_iff

Theorems

NameKindAssumesProvesValidatesDepends On
Iic_iInf πŸ“–mathematicalβ€”Iic
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iInf
CompleteSemilatticeInf.toInfSet
LowerSet
Preorder.toLE
instInfSet
β€”SetLike.ext
Iic_iInfβ‚‚ πŸ“–mathematicalβ€”Iic
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iInf
CompleteSemilatticeInf.toInfSet
LowerSet
Preorder.toLE
instInfSet
β€”Iic_iInf
Iic_inf πŸ“–mathematicalβ€”Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMin
LowerSet
Preorder.toLE
instMin
β€”SetLike.coe_injective
Set.Iic_inter_Iic
Iic_inj πŸ“–mathematicalβ€”Iic
PartialOrder.toPreorder
β€”Iic_injective
Iic_injective πŸ“–mathematicalβ€”LowerSet
Preorder.toLE
PartialOrder.toPreorder
Iic
β€”Set.Iic_injective
Iic_le πŸ“–mathematicalβ€”LowerSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Iic
SetLike.instMembership
instSetLike
β€”le_rfl
IsLowerSet.Iic_subset
lower
Iic_ne_Iic πŸ“–β€”β€”β€”β€”Iff.not
Iic_ne_bot πŸ“–β€”β€”β€”β€”SetLike.coe_ne_coe
Set.Nonempty.ne_empty
Set.nonempty_Iic
Iic_sInf πŸ“–mathematicalβ€”Iic
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
InfSet.sInf
CompleteSemilatticeInf.toInfSet
iInf
LowerSet
Preorder.toLE
instInfSet
Set
Set.instMembership
β€”SetLike.ext
Iic_strictMono πŸ“–mathematicalβ€”StrictMono
LowerSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Iic
β€”Set.Iic_ssubset_Iic
Iic_top πŸ“–mathematicalβ€”Iic
Top.top
OrderTop.toTop
Preorder.toLE
LowerSet
instTop
β€”SetLike.coe_injective
Set.Iic_top
Iio_bot πŸ“–mathematicalβ€”Iio
Bot.bot
OrderBot.toBot
Preorder.toLE
LowerSet
instBot
β€”SetLike.coe_injective
Set.Iio_bot
Iio_eq_bot πŸ“–mathematicalβ€”Iio
PartialOrder.toPreorder
Bot.bot
LowerSet
Preorder.toLE
instBot
OrderBot.toBot
β€”β€”
Iio_strictMono πŸ“–mathematicalβ€”StrictMono
LowerSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Iio
β€”Set.Iio_ssubset_Iio
Ioi_le_Ici πŸ“–mathematicalβ€”Set
Set.instLE
Set.Ioi
Set.Ici
β€”Set.Ioi_subset_Ici_self
bot_lt_Iic πŸ“–mathematicalβ€”LowerSet
Preorder.toLE
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Bot.bot
instBot
Iic
β€”bot_lt_iff_ne_bot
Iic_ne_bot
coe_Iic πŸ“–mathematicalβ€”SetLike.coe
LowerSet
Preorder.toLE
instSetLike
Iic
Set.Iic
β€”β€”
coe_Iio πŸ“–mathematicalβ€”SetLike.coe
LowerSet
Preorder.toLE
instSetLike
Iio
Set.Iio
β€”β€”
map_Iic πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
LowerSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
Iic
β€”ext
Set.ext
OrderIso.image_Iic
map_Iio πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
LowerSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
Iio
β€”ext
Set.ext
OrderIso.image_Iio
mem_Iic_iff πŸ“–mathematicalβ€”LowerSet
Preorder.toLE
SetLike.instMembership
instSetLike
Iic
β€”β€”
mem_Iio_iff πŸ“–mathematicalβ€”LowerSet
Preorder.toLE
SetLike.instMembership
instSetLike
Iio
Preorder.toLT
β€”β€”

UpperSet

Definitions

NameCategoryTheorems
Ici πŸ“–CompOp
31 mathmath: coe_Ici, Ici_injective, Ici_inf_erase, Ici_zero, Ici_lt_top, Ici_iSup, upperClosure_singleton, Ici_sup, Ici_sSup, mem_Ici_iff, OrderEmbedding.infIrredUpperSet_apply, Ici_prod_Ici, coe_iciSupHom, infIrred_Ici, le_Ici, erase_inf_Ici, LowerSet.coe_erase, map_Ici, coe_icisSupHom, Ici_one, icisSupHom_apply, iciSupHom_apply, OrderIso.infIrredUpperSet_apply, infIrred_iff_of_finite, Ici_le_Ioi, Ici_bot, Ici_inj, Ici_prod, iInf_Ici, Ici_iSupβ‚‚, Ici_strictMono
Ioi πŸ“–CompOp
7 mathmath: mem_Ioi_iff, Ioi_top, Ioi_eq_top, map_Ioi, Ioi_strictMono, coe_Ioi, Ici_le_Ioi

Theorems

NameKindAssumesProvesValidatesDepends On
Ici_bot πŸ“–mathematicalβ€”Ici
Bot.bot
OrderBot.toBot
Preorder.toLE
UpperSet
instBot
β€”SetLike.coe_injective
Set.Ici_bot
Ici_iSup πŸ“–mathematicalβ€”Ici
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
UpperSet
Preorder.toLE
instSupSet
β€”SetLike.ext
Ici_iSupβ‚‚ πŸ“–mathematicalβ€”Ici
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
UpperSet
Preorder.toLE
instSupSet
β€”Ici_iSup
Ici_inj πŸ“–mathematicalβ€”Ici
PartialOrder.toPreorder
β€”Ici_injective
Ici_injective πŸ“–mathematicalβ€”UpperSet
Preorder.toLE
PartialOrder.toPreorder
Ici
β€”Set.Ici_injective
Ici_le_Ioi πŸ“–mathematicalβ€”UpperSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Ici
Ioi
β€”Set.Ioi_subset_Ici_self
Ici_lt_top πŸ“–mathematicalβ€”UpperSet
Preorder.toLE
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Ici
Top.top
instTop
β€”lt_top_iff_ne_top
Ici_ne_top
Ici_ne_Ici πŸ“–β€”β€”β€”β€”Iff.not
Ici_ne_top πŸ“–β€”β€”β€”β€”SetLike.coe_ne_coe
Set.Nonempty.ne_empty
Set.nonempty_Ici
Ici_sSup πŸ“–mathematicalβ€”Ici
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iSup
UpperSet
Preorder.toLE
instSupSet
Set
Set.instMembership
β€”SetLike.ext
Ici_strictMono πŸ“–mathematicalβ€”StrictMono
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Ici
β€”Set.Ici_ssubset_Ici
Ici_sup πŸ“–mathematicalβ€”Ici
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMax
UpperSet
Preorder.toLE
instMax
β€”ext
Set.Ici_inter_Ici
Ioi_eq_top πŸ“–mathematicalβ€”Ioi
PartialOrder.toPreorder
Top.top
UpperSet
Preorder.toLE
instTop
OrderTop.toTop
β€”β€”
Ioi_strictMono πŸ“–mathematicalβ€”StrictMono
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Ioi
β€”Set.Ioi_ssubset_Ioi
Ioi_top πŸ“–mathematicalβ€”Ioi
Top.top
OrderTop.toTop
Preorder.toLE
UpperSet
instTop
β€”SetLike.coe_injective
Set.Ioi_top
coe_Ici πŸ“–mathematicalβ€”SetLike.coe
UpperSet
Preorder.toLE
instSetLike
Ici
Set.Ici
β€”β€”
coe_Ioi πŸ“–mathematicalβ€”SetLike.coe
UpperSet
Preorder.toLE
instSetLike
Ioi
Set.Ioi
β€”β€”
le_Ici πŸ“–mathematicalβ€”UpperSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Ici
SetLike.instMembership
instSetLike
β€”le_rfl
IsUpperSet.Ici_subset
upper
map_Ici πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
Ici
β€”ext
Set.ext
OrderIso.image_Ici
map_Ioi πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderIso
map
Ioi
β€”ext
Set.ext
OrderIso.image_Ioi
mem_Ici_iff πŸ“–mathematicalβ€”UpperSet
Preorder.toLE
SetLike.instMembership
instSetLike
Ici
β€”β€”
mem_Ioi_iff πŸ“–mathematicalβ€”UpperSet
Preorder.toLE
SetLike.instMembership
instSetLike
Ioi
Preorder.toLT
β€”β€”

---

← Back to Index