Documentation Verification Report

Relative

πŸ“ Source: Mathlib/Order/UpperLower/Relative.lean

Statistics

MetricCount
DefinitionsinstPartialOrderRelUpperSet, instSetLikeRelLowerSet, instSetLikeRelUpperSet
3
TheoremsisRelLowerSet_sep, iInter, iInterβ‚‚, iUnion, iUnionβ‚‚, inter, mono_isLowerSet, prop_of_mem, sInter, sUnion, union, iInter, iInterβ‚‚, iUnion, iUnionβ‚‚, inter, mono_isUpperSet, prop_of_mem, sInter, sUnion, union, isRelUpperSet_sep, isRelLowerSet, isRelUpperSet, isLowerSet_subtype_iff_isRelLowerSet, isRelLowerSet_Icc_ge, isRelLowerSet_empty, isRelLowerSet_self, isRelUpperSet_Icc_le, isRelUpperSet_empty, isRelUpperSet_self, isUpperSet_subtype_iff_isRelUpperSet
32
Total35

IsLowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
isRelLowerSet_sep πŸ“–mathematicalIsLowerSetIsRelLowerSet
setOf
Set
Set.instMembership
β€”β€”

IsRelLowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
iInter πŸ“–mathematicalIsRelLowerSetSet.iInterβ€”sInter
Set.range_nonempty
Set.forall_mem_range
iInterβ‚‚ πŸ“–mathematicalIsRelLowerSetSet.iInterβ€”iInter
iUnion πŸ“–mathematicalIsRelLowerSetSet.iUnionβ€”sUnion
Set.forall_mem_range
iUnionβ‚‚ πŸ“–mathematicalIsRelLowerSetSet.iUnionβ€”iUnion
inter πŸ“–mathematicalIsRelLowerSetSet
Set.instInter
β€”β€”
mono_isLowerSet πŸ“–β€”IsRelLowerSet
IsLowerSet
Set
Set.instHasSubset
β€”β€”β€”
prop_of_mem πŸ“–β€”IsRelLowerSet
Set
Set.instMembership
β€”β€”β€”
sInter πŸ“–mathematicalSet.Nonempty
Set
IsRelLowerSet
Set.sInterβ€”β€”
sUnion πŸ“–mathematicalIsRelLowerSetSet.sUnionβ€”β€”
union πŸ“–mathematicalIsRelLowerSetSet
Set.instUnion
β€”β€”

IsRelUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
iInter πŸ“–mathematicalIsRelUpperSetSet.iInterβ€”sInter
Set.range_nonempty
Set.forall_mem_range
iInterβ‚‚ πŸ“–mathematicalIsRelUpperSetSet.iInterβ€”iInter
iUnion πŸ“–mathematicalIsRelUpperSetSet.iUnionβ€”sUnion
Set.forall_mem_range
iUnionβ‚‚ πŸ“–mathematicalIsRelUpperSetSet.iUnionβ€”iUnion
inter πŸ“–mathematicalIsRelUpperSetSet
Set.instInter
β€”β€”
mono_isUpperSet πŸ“–β€”IsRelUpperSet
IsUpperSet
Set
Set.instHasSubset
β€”β€”β€”
prop_of_mem πŸ“–β€”IsRelUpperSet
Set
Set.instMembership
β€”β€”β€”
sInter πŸ“–mathematicalSet.Nonempty
Set
IsRelUpperSet
Set.sInterβ€”β€”
sUnion πŸ“–mathematicalIsRelUpperSetSet.sUnionβ€”β€”
union πŸ“–mathematicalIsRelUpperSetSet
Set.instUnion
β€”β€”

IsUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
isRelUpperSet_sep πŸ“–mathematicalIsUpperSetIsRelUpperSet
setOf
Set
Set.instMembership
β€”β€”

RelLowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
isRelLowerSet πŸ“–mathematicalβ€”IsRelLowerSet
SetLike.coe
RelLowerSet
instSetLikeRelLowerSet
β€”isRelLowerSet'

RelUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
isRelUpperSet πŸ“–mathematicalβ€”IsRelUpperSet
SetLike.coe
RelUpperSet
instSetLikeRelUpperSet
β€”isRelUpperSet'

(root)

Definitions

NameCategoryTheorems
instPartialOrderRelUpperSet πŸ“–CompOpβ€”
instSetLikeRelLowerSet πŸ“–CompOp
1 mathmath: RelLowerSet.isRelLowerSet
instSetLikeRelUpperSet πŸ“–CompOp
1 mathmath: RelUpperSet.isRelUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
isLowerSet_subtype_iff_isRelLowerSet πŸ“–mathematicalβ€”IsLowerSet
IsRelLowerSet
Set.image
β€”Subtype.coe_eta
isRelLowerSet_Icc_ge πŸ“–mathematicalβ€”IsRelLowerSet
Preorder.toLE
Set.Icc
β€”LE.le.trans
isRelLowerSet_empty πŸ“–mathematicalβ€”IsRelLowerSet
Set
Set.instEmptyCollection
β€”β€”
isRelLowerSet_self πŸ“–mathematicalβ€”IsRelLowerSet
Set
Set.instMembership
β€”β€”
isRelUpperSet_Icc_le πŸ“–mathematicalβ€”IsRelUpperSet
Preorder.toLE
Set.Icc
β€”LE.le.trans
isRelUpperSet_empty πŸ“–mathematicalβ€”IsRelUpperSet
Set
Set.instEmptyCollection
β€”β€”
isRelUpperSet_self πŸ“–mathematicalβ€”IsRelUpperSet
Set
Set.instMembership
β€”β€”
isUpperSet_subtype_iff_isRelUpperSet πŸ“–mathematicalβ€”IsUpperSet
IsRelUpperSet
Set.image
β€”Subtype.coe_eta

---

← Back to Index