WellFounded
📁 Source: Mathlib/Order/WellFounded.lean
Statistics
Acc
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
induction_bot 📖 | — | — | — | — | induction_bot' |
induction_bot' 📖 | — | — | — | — | eq_or_ne |
Function
Definitions
| Name | Category | Theorems |
|---|---|---|
argmin 📖 | CompOp | |
argminOn 📖 | CompOp |
Theorems
Set
Theorems
StrictAnti
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
range_inj 📖 | mathematical | StrictAntiPartialOrder.toPreorderSemilatticeInf.toPartialOrderLattice.toSemilatticeInfDistribLattice.toLatticeinstDistribLatticeOfLinearOrder | Set.range | — | Set.InjOn.eq_iffSet.range_injOn_strictAnti |
StrictMono
Theorems
ULift
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instWellFoundedGT 📖 | mathematical | — | WellFoundedGTinstLT_mathlib | — | instWellFoundedLTinstWellFoundedLTOrderDualOfWellFoundedGT |
instWellFoundedLT 📖 | mathematical | — | WellFoundedLTinstLT_mathlib | — | IsWellFounded.wf |
WellFounded
Definitions
| Name | Category | Theorems |
|---|---|---|
min 📖 | CompOp | |
sup 📖 | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
asymm 📖 | — | — | — | — | asymmetric |
has_min 📖 | mathematical | Set.Nonempty | SetSet.instMembership | — | not_imp_not |
induction_bot 📖 | — | — | — | — | induction_bot' |
induction_bot' 📖 | — | — | — | — | Acc.induction_bot' |
instAsymmRel_mathlib 📖 | — | — | — | — | asymm |
irrefl 📖 | — | — | — | — | Std.Asymm.irreflasymm |
isAsymm 📖 | — | — | — | — | asymm |
isIrrefl 📖 | — | — | — | — | irrefl |
lt_sup 📖 | mathematical | Set.BoundedSetSet.instMembership | sup | — | min_mem |
min_le 📖 | mathematical | Preorder.toLTPartialOrder.toPreorderSemilatticeInf.toPartialOrderLattice.toSemilatticeInfDistribLattice.toLatticeinstDistribLatticeOfLinearOrderSetSet.instMembershipSet.Nonempty | Preorder.toLEmin | — | not_ltnot_lt_min |
min_mem 📖 | mathematical | Set.Nonempty | SetSet.instMembershipmin | — | has_min |
mono 📖 | — | — | — | — | — |
not_lt_min 📖 | mathematical | Set.NonemptySetSet.instMembership | min | — | has_min |
not_rel_apply_succ 📖 | — | — | — | — | wellFounded_iff_isEmpty_descending_chainIsWellFounded.wf |
onFun 📖 | mathematical | — | Function.onFun | — | — |
wellFounded_iff_has_min 📖 | mathematical | — | SetSet.instMembership | — | has_min |
WellFoundedGT
Definitions
| Name | Category | Theorems |
|---|---|---|
toOrderTop 📖 | CompOp | — |
WellFoundedLT
Definitions
| Name | Category | Theorems |
|---|---|---|
toOrderBot 📖 | CompOp | — |
(root)
Theorems
---