Documentation Verification Report

WellFounded

📁 Source: Mathlib/Order/WellFounded.lean

Statistics

MetricCount
Definitionsargmin, argminOn, min, sup, toOrderTop, toOrderBot
6
Theoremsinduction_bot, induction_bot', argminOn_le, argminOn_mem, argmin_le, isMinimalFor_argmin, isMinimalFor_argminOn, not_lt_argmin, not_lt_argminOn, range_injOn_strictAnti, range_injOn_strictMono, range_inj, apply_le, id_le, le_apply, le_id, not_bddAbove_range_of_wellFoundedLT, not_bddBelow_range_of_wellFoundedGT, range_inj, instWellFoundedGT, instWellFoundedLT, asymm, has_min, induction_bot, induction_bot', instAsymmRel_mathlib, irrefl, isAsymm, isIrrefl, lt_sup, min_le, min_mem, mono, not_lt_min, not_rel_apply_succ, onFun, wellFounded_iff_has_min, acc_def, acc_iff_isEmpty_descending_chain, exists_not_acc_lt_of_not_acc, not_acc_iff_exists_descending_chain, wellFounded_iff_isEmpty_descending_chain
42
Total48

Acc

Theorems

NameKindAssumesProvesValidatesDepends On
induction_bot 📖induction_bot'
induction_bot' 📖eq_or_ne

Function

Definitions

NameCategoryTheorems
argmin 📖CompOp
3 mathmath: isMinimalFor_argmin, argmin_le, not_lt_argmin
argminOn 📖CompOp
5 mathmath: sInf_eq_argmin_on, argminOn_mem, isMinimalFor_argminOn, argminOn_le, not_lt_argminOn

Theorems

NameKindAssumesProvesValidatesDepends On
argminOn_le 📖mathematicalSet
Set.instMembership
Set.Nonempty
Set.nonempty_of_mem
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
argminOn
Preorder.toLT
not_lt
not_lt_argminOn
argminOn_mem 📖mathematicalSet.NonemptySet
Set.instMembership
argminOn
WellFounded.min_mem
argmin_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
argmin
Preorder.toLT
not_lt
not_lt_argmin
isMinimalFor_argmin 📖mathematicalMinimalFor
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.univ
argmin
Preorder.toLT
Set.mem_univ
argmin_le
isMinimalFor_argminOn 📖mathematicalSet.NonemptyMinimalFor
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
argminOn
Preorder.toLT
argminOn_mem
argminOn_le
not_lt_argmin 📖mathematicalargminWellFounded.not_lt_min
wellFounded_lt
Set.univ_nonempty
Set.mem_univ
not_lt_argminOn 📖mathematicalSet
Set.instMembership
Set.Nonempty
Set.nonempty_of_mem
argminOnWellFounded.not_lt_min
wellFounded_lt

Set

Theorems

NameKindAssumesProvesValidatesDepends On
range_injOn_strictAnti 📖mathematicalInjOn
Set
range
setOf
StrictAnti
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
range_injOn_strictMono
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
StrictAnti.dual
range_injOn_strictMono 📖mathematicalInjOn
Set
range
setOf
StrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
WellFoundedLT.induction
mem_range_self
lt_trichotomy
Eq.not_lt
StrictMono.injective
StrictMono.lt_iff_lt

StrictAnti

Theorems

NameKindAssumesProvesValidatesDepends On
range_inj 📖mathematicalStrictAnti
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.rangeSet.InjOn.eq_iff
Set.range_injOn_strictAnti

StrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
apply_le 📖mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLEle_apply
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
dual
id_le 📖mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.hasLe
Preorder.toLE
Pi.le_def
WellFounded.has_min
wellFounded_lt
Mathlib.Tactic.Push.not_forall_eq
le_apply 📖mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLEid_le
le_id 📖mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.hasLe
Preorder.toLE
id_le
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
dual
not_bddAbove_range_of_wellFoundedLT 📖mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
BddAbove
Preorder.toLE
Set.range
NoMaxOrder.exists_gt
LT.lt.false
LT.lt.trans_le
LE.le.trans_lt
le_apply
Set.mem_range_self
not_bddBelow_range_of_wellFoundedGT 📖mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
BddBelow
Preorder.toLE
Set.range
not_bddAbove_range_of_wellFoundedLT
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
OrderDual.noMaxOrder
dual
range_inj 📖mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.rangeSet.InjOn.eq_iff
Set.range_injOn_strictMono

ULift

Theorems

NameKindAssumesProvesValidatesDepends On
instWellFoundedGT 📖mathematicalWellFoundedGT
instLT_mathlib
instWellFoundedLT
instWellFoundedLTOrderDualOfWellFoundedGT
instWellFoundedLT 📖mathematicalWellFoundedLT
instLT_mathlib
IsWellFounded.wf

WellFounded

Definitions

NameCategoryTheorems
min 📖CompOp
4 mathmath: min_mem, MvPowerSeries.lexOrder_def_of_ne_zero, min_le, not_lt_min
sup 📖CompOp
1 mathmath: lt_sup

Theorems

NameKindAssumesProvesValidatesDepends On
asymm 📖asymmetric
has_min 📖mathematicalSet.NonemptySet
Set.instMembership
not_imp_not
induction_bot 📖induction_bot'
induction_bot' 📖Acc.induction_bot'
instAsymmRel_mathlib 📖asymm
irrefl 📖Std.Asymm.irrefl
asymm
isAsymm 📖asymm
isIrrefl 📖irrefl
lt_sup 📖mathematicalSet.Bounded
Set
Set.instMembership
supmin_mem
min_le 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.Nonempty
Preorder.toLE
min
not_lt
not_lt_min
min_mem 📖mathematicalSet.NonemptySet
Set.instMembership
min
has_min
mono 📖
not_lt_min 📖mathematicalSet.Nonempty
Set
Set.instMembership
minhas_min
not_rel_apply_succ 📖wellFounded_iff_isEmpty_descending_chain
IsWellFounded.wf
onFun 📖mathematicalFunction.onFun
wellFounded_iff_has_min 📖mathematicalSet
Set.instMembership
has_min

WellFoundedGT

Definitions

NameCategoryTheorems
toOrderTop 📖CompOp

WellFoundedLT

Definitions

NameCategoryTheorems
toOrderBot 📖CompOp

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
acc_def 📖
acc_iff_isEmpty_descending_chain 📖mathematicalIsEmptyMathlib.Tactic.Contrapose.contrapose_iff₁
nonempty_subtype
not_acc_iff_exists_descending_chain
exists_not_acc_lt_of_not_acc 📖Mathlib.Tactic.Push.not_forall_eq
acc_def
not_acc_iff_exists_descending_chain 📖exists_not_acc_lt_of_not_acc
wellFounded_iff_isEmpty_descending_chain 📖mathematicalIsEmptyIsEmpty.false
acc_iff_isEmpty_descending_chain

---

← Back to Index