Documentation Verification Report

WellFoundedSet

πŸ“ Source: Mathlib/Order/WellFoundedSet.lean

Statistics

MetricCount
DefinitionsIsPWO, IsWF, min, PartiallyWellOrderedOn, IsBadSeq, IsMinBadSeq, minBadSeqOfBadSeq, WellFoundedOn
8
TheoremswellFoundedOn_gt, isWF, wellFoundedOn_lt, isPWO, isPWO_bUnion, isPWO_sup, isWF, isWF_bUnion, isWF_sup, partiallyWellOrderedOn, partiallyWellOrderedOn_bUnion, partiallyWellOrderedOn_sup, wellFoundedOn, wellFoundedOn_bUnion, wellFoundedOn_sup, finite_of_partiallyWellOrderedOn, partiallyWellOrderedOn_iff, isPWO, isPWO, isWF, partiallyWellOrderedOn, wellFoundedOn, exists_le_minimal, exists_minimal, exists_minimalFor, exists_monotone_subseq, image_of_monotone, image_of_monotoneOn, insert, isWF, mono, of_linearOrder, pi, prod, union, subset, insert, isPWO, le_min_iff, min_eq_of_le, min_eq_of_lt, min_le, min_le_min_of_subset, min_mem, min_of_subset_not_lt_min, min_union, mono, not_lt_min, of_wellFoundedLT, union, ProdLex_iff, bddAbove_preimage, exists_lt, exists_min_bad_of_exists_bad, exists_monotone_subseq, exists_notMem_of_gt, fiberProdLex, iff_forall_not_isBadSeq, iff_not_exists_isMinBadSeq, imageProdLex, image_of_monotone_on, insert, mono, partiallyWellOrderedOn_sublistForallβ‚‚, pi, prod, subsetProdLex, union, wellFoundedOn, isPWO, isWF, partiallyWellOrderedOn, wellFoundedOn, acc_iff_wellFoundedOn, induction, insert, mapsTo, mono, mono', prod_lex_of_wellFoundedOn_fiber, sdiff_singleton, sigma_lex_of_wellFoundedOn_fiber, subset, union, isPWO_empty, isPWO_iff_exists_monotone_subseq, isPWO_iff_isWF, isPWO_insert, isPWO_of_finite, isPWO_of_wellQuasiOrderedLE, isPWO_singleton, isPWO_union, isPWO_univ_iff, isWF_empty, isWF_iff_no_descending_seq, isWF_insert, isWF_min_singleton, isWF_singleton, isWF_union, isWF_univ_iff, partiallyWellOrderedOn_empty, partiallyWellOrderedOn_iff_exists_lt, partiallyWellOrderedOn_iff_exists_monotone_subseq, partiallyWellOrderedOn_iff_finite_antichains, partiallyWellOrderedOn_insert, partiallyWellOrderedOn_of_wellQuasiOrdered, partiallyWellOrderedOn_singleton, partiallyWellOrderedOn_union, partiallyWellOrderedOn_univ_iff, wellFoundedOn_empty, wellFoundedOn_iff, wellFoundedOn_iff_no_descending_seq, wellFoundedOn_image, wellFoundedOn_insert, wellFoundedOn_range, wellFoundedOn_sdiff_singleton, wellFoundedOn_singleton, wellFoundedOn_union, wellFoundedOn_univ, prod_lex_of_wellFoundedOn_fiber, sigma_lex_of_wellFoundedOn_fiber, wellFoundedOn
122
Total130

BddAbove

Theorems

NameKindAssumesProvesValidatesDepends On
wellFoundedOn_gt πŸ“–mathematicalBddAbove
Preorder.toLE
Set.WellFoundedOn
Preorder.toLT
β€”BddBelow.wellFoundedOn_lt
dual

BddBelow

Theorems

NameKindAssumesProvesValidatesDepends On
isWF πŸ“–mathematicalBddBelow
Preorder.toLE
Set.IsWF
Preorder.toLT
β€”wellFoundedOn_lt
wellFoundedOn_lt πŸ“–mathematicalBddBelow
Preorder.toLE
Set.WellFoundedOn
Preorder.toLT
β€”Set.wellFoundedOn_iff_no_descending_seq
instIsStrictOrderLt
Set.infinite_range_of_injective
instInfiniteNat
RelEmbedding.injective
Set.Finite.subset
Set.finite_Icc
Set.range_subset_iff
antitone_iff_forall_lt
LT.lt.le
RelEmbedding.map_rel_iff

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
isPWO πŸ“–mathematicalβ€”Set.IsPWO
SetLike.coe
Finset
instSetLike
β€”partiallyWellOrderedOn
instReflLe
isPWO_bUnion πŸ“–mathematicalβ€”Set.IsPWO
Set.iUnion
Finset
instMembership
β€”partiallyWellOrderedOn_bUnion
isPWO_sup πŸ“–mathematicalβ€”Set.IsPWO
sup
Set
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”partiallyWellOrderedOn_sup
isWF πŸ“–mathematicalβ€”Set.IsWF
Preorder.toLT
SetLike.coe
Finset
instSetLike
β€”Set.Finite.isWF
finite_toSet
isWF_bUnion πŸ“–mathematicalβ€”Set.IsWF
Preorder.toLT
Set.iUnion
Finset
instMembership
β€”wellFoundedOn_bUnion
instIsStrictOrderLt
isWF_sup πŸ“–mathematicalβ€”Set.IsWF
Preorder.toLT
sup
Set
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”wellFoundedOn_sup
instIsStrictOrderLt
partiallyWellOrderedOn πŸ“–mathematicalβ€”Set.PartiallyWellOrderedOn
SetLike.coe
Finset
instSetLike
β€”Set.Finite.partiallyWellOrderedOn
finite_toSet
partiallyWellOrderedOn_bUnion πŸ“–mathematicalβ€”Set.PartiallyWellOrderedOn
Set.iUnion
Finset
instMembership
β€”sup_eq_iSup
partiallyWellOrderedOn_sup
partiallyWellOrderedOn_sup πŸ“–mathematicalβ€”Set.PartiallyWellOrderedOn
sup
Set
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”cons_induction_on
sup_empty
instIsEmptyFalse
sup_cons
wellFoundedOn πŸ“–mathematicalβ€”Set.WellFoundedOn
SetLike.coe
Finset
instSetLike
β€”isWF
wellFoundedOn_bUnion πŸ“–mathematicalβ€”Set.WellFoundedOn
Set.iUnion
Finset
instMembership
β€”sup_eq_iSup
wellFoundedOn_sup
wellFoundedOn_sup πŸ“–mathematicalβ€”Set.WellFoundedOn
sup
Set
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”cons_induction_on
sup_empty
instIsEmptyFalse
sup_cons

IsAntichain

Theorems

NameKindAssumesProvesValidatesDepends On
finite_of_partiallyWellOrderedOn πŸ“–mathematicalIsAntichain
Set.PartiallyWellOrderedOn
Set.Finiteβ€”LT.lt.ne
Function.Embedding.injective
Subtype.val_injective
eq
partiallyWellOrderedOn_iff πŸ“–mathematicalIsAntichainSet.PartiallyWellOrderedOn
Set.Finite
β€”finite_of_partiallyWellOrderedOn
Set.Finite.partiallyWellOrderedOn

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
isPWO πŸ“–mathematicalWellQuasiOrderedLE
Preorder.toLE
Set.IsPWO
preorder
β€”Set.isPWO_of_wellQuasiOrderedLE
wellQuasiOrderedLE

Set

Definitions

NameCategoryTheorems
IsPWO πŸ“–MathDef
26 mathmath: HahnSeries.SummableFamily.isPWO_iUnion_support', HahnSeries.isPWO_support, HVertexOperator.coeff_isPWOsupport, Pi.isPWO, isPWO_univ_iff, HahnSeries.SummableFamily.isPWO_iUnion_support, isPWO_insert, isPWO_union, HahnSeries.isPWO_support', isPWO_iff_exists_monotone_subseq, Finsupp.isPWO, Finite.isPWO, Subsingleton.isPWO, HahnSeries.SummableFamily.isPWO_iUnion_support_powers, Finset.isPWO_sup, HahnSeries.suppBddBelow_supp_PWO, isPWO_singleton, IsWF.isPWO, isPWO_empty, Finset.isPWO_bUnion, Finset.isPWO, isPWO_of_wellQuasiOrderedLE, isPWO_iff_isWF, isPWO_of_finite, IsPWO.of_linearOrder, PartiallyWellOrderedOn.ProdLex_iff
IsWF πŸ“–MathDef
17 mathmath: isWF_insert, Finset.isWF_sup, HahnEmbedding.Partial.isWF_support_evalCoeff, isWF_union, isWF_empty, IsPWO.isWF, Finset.isWF_bUnion, isWF_singleton, BddBelow.isWF, isWF_univ_iff, isPWO_iff_isWF, Finite.isWF, Subsingleton.isWF, isWF_iff_no_descending_seq, IsWF.of_wellFoundedLT, HahnSeries.isWF_support, Finset.isWF
PartiallyWellOrderedOn πŸ“–MathDef
17 mathmath: partiallyWellOrderedOn_insert, partiallyWellOrderedOn_iff_exists_lt, Finite.partiallyWellOrderedOn, Finset.partiallyWellOrderedOn, Subsingleton.partiallyWellOrderedOn, partiallyWellOrderedOn_singleton, partiallyWellOrderedOn_of_wellQuasiOrdered, Finset.partiallyWellOrderedOn_sup, partiallyWellOrderedOn_empty, PartiallyWellOrderedOn.iff_not_exists_isMinBadSeq, partiallyWellOrderedOn_iff_finite_antichains, partiallyWellOrderedOn_union, partiallyWellOrderedOn_univ_iff, partiallyWellOrderedOn_iff_exists_monotone_subseq, Finset.partiallyWellOrderedOn_bUnion, IsAntichain.partiallyWellOrderedOn_iff, PartiallyWellOrderedOn.iff_forall_not_isBadSeq
WellFoundedOn πŸ“–MathDef
27 mathmath: LinearOrderedAddCommGroup.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete, wellFoundedOn_empty, Finite.wellFoundedOn, WellFounded.wellFoundedOn, Finset.wellFoundedOn_bUnion, BddBelow.wellFoundedOn_lt, PartiallyWellOrderedOn.wellFoundedOn, BddAbove.wellFoundedOn_gt, wellFoundedOn_iff, LinearOrderedCommGroup.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete, wellFoundedOn_insert, Subsingleton.wellFoundedOn, WellFoundedOn.acc_iff_wellFoundedOn, wellFoundedOn_univ, wellFoundedOn_image, wellFoundedOn_iff_no_descending_seq, Ideal.setOf_isPrincipal_wellFoundedOn_gt, LinearOrderedCommGroup.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete, LinearOrderedAddCommGroup.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete, wellFoundedOn_range, LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero, wellFoundedOn_sdiff_singleton, Finset.wellFoundedOn_sup, wellFoundedOn_union, Finset.wellFoundedOn, wellFoundedOn_singleton, LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero

Theorems

NameKindAssumesProvesValidatesDepends On
isPWO_empty πŸ“–mathematicalβ€”IsPWO
Set
instEmptyCollection
β€”Finite.isPWO
finite_empty
isPWO_iff_exists_monotone_subseq πŸ“–mathematicalβ€”IsPWO
Monotone
Nat.instPreorder
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
β€”partiallyWellOrderedOn_iff_exists_monotone_subseq
instIsPreorderLe
isPWO_iff_isWF πŸ“–mathematicalβ€”IsPWO
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsWF
Preorder.toLT
β€”wellQuasiOrderedLE_def
isWellFounded_iff
wellQuasiOrderedLE_iff_wellFoundedLT
isPWO_insert πŸ“–mathematicalβ€”IsPWO
Set
instInsert
β€”β€”
isPWO_of_finite πŸ“–mathematicalβ€”IsPWOβ€”Finite.isPWO
toFinite
Subtype.finite
isPWO_of_wellQuasiOrderedLE πŸ“–mathematicalβ€”IsPWOβ€”partiallyWellOrderedOn_of_wellQuasiOrdered
WellQuasiOrderedLE.wqo
isPWO_singleton πŸ“–mathematicalβ€”IsPWO
Set
instSingletonSet
β€”Finite.isPWO
finite_singleton
isPWO_union πŸ“–mathematicalβ€”IsPWO
Set
instUnion
β€”partiallyWellOrderedOn_union
isPWO_univ_iff πŸ“–mathematicalβ€”IsPWO
univ
WellQuasiOrderedLE
Preorder.toLE
β€”partiallyWellOrderedOn_univ_iff
wellQuasiOrderedLE_def
isWF_empty πŸ“–mathematicalβ€”IsWF
Set
instEmptyCollection
β€”wellFounded_of_isEmpty
instIsEmptyElemEmptyCollection
isWF_iff_no_descending_seq πŸ“–mathematicalβ€”IsWF
Preorder.toLT
Set
instMembership
β€”wellFoundedOn_iff_no_descending_seq
instIsStrictOrderLt
StrictAnti.injective
StrictAnti.lt_iff_gt
RelEmbedding.map_rel_iff
isWF_insert πŸ“–mathematicalβ€”IsWF
Preorder.toLT
Set
instInsert
β€”β€”
isWF_min_singleton πŸ“–mathematicalIsWF
Preorder.toLT
Set
instSingletonSet
Nonempty
IsWF.minβ€”eq_of_mem_singleton
IsWF.min_mem
isWF_singleton πŸ“–mathematicalβ€”IsWF
Preorder.toLT
Set
instSingletonSet
β€”Finite.isWF
finite_singleton
isWF_union πŸ“–mathematicalβ€”IsWF
Preorder.toLT
Set
instUnion
β€”wellFoundedOn_union
instIsStrictOrderLt
isWF_univ_iff πŸ“–mathematicalβ€”IsWF
univ
WellFoundedLT
β€”β€”
partiallyWellOrderedOn_empty πŸ“–mathematicalβ€”PartiallyWellOrderedOn
Set
instEmptyCollection
β€”wellQuasiOrdered_of_isEmpty
instIsEmptyElemEmptyCollection
partiallyWellOrderedOn_iff_exists_lt πŸ“–mathematicalβ€”PartiallyWellOrderedOnβ€”PartiallyWellOrderedOn.exists_lt
partiallyWellOrderedOn_iff_exists_monotone_subseq πŸ“–mathematicalβ€”PartiallyWellOrderedOn
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
β€”PartiallyWellOrderedOn.exists_monotone_subseq
PartiallyWellOrderedOn.eq_1
wellQuasiOrdered_iff_exists_monotone_subseq
Subrel.instIsPreorderSubtype
partiallyWellOrderedOn_iff_finite_antichains πŸ“–mathematicalβ€”PartiallyWellOrderedOn
Finite
β€”IsAntichain.finite_of_partiallyWellOrderedOn
PartiallyWellOrderedOn.mono
partiallyWellOrderedOn_iff_exists_lt
infinite_range_of_injective
instInfiniteNat
lt_trichotomy
Mathlib.Tactic.Push.not_and_eq
refl
range_subset_iff
Ne.lt_or_gt
symm
partiallyWellOrderedOn_insert πŸ“–mathematicalβ€”PartiallyWellOrderedOn
Set
instInsert
β€”β€”
partiallyWellOrderedOn_of_wellQuasiOrdered πŸ“–mathematicalWellQuasiOrderedPartiallyWellOrderedOnβ€”PartiallyWellOrderedOn.mono
partiallyWellOrderedOn_univ_iff
subset_univ
partiallyWellOrderedOn_singleton πŸ“–mathematicalβ€”PartiallyWellOrderedOn
Set
instSingletonSet
β€”Finite.partiallyWellOrderedOn
finite_singleton
partiallyWellOrderedOn_union πŸ“–mathematicalβ€”PartiallyWellOrderedOn
Set
instUnion
β€”PartiallyWellOrderedOn.mono
subset_union_left
subset_union_right
PartiallyWellOrderedOn.union
partiallyWellOrderedOn_univ_iff πŸ“–mathematicalβ€”PartiallyWellOrderedOn
univ
WellQuasiOrdered
β€”RelIso.wellQuasiOrdered_iff
wellFoundedOn_empty πŸ“–mathematicalβ€”WellFoundedOn
Set
instEmptyCollection
β€”wellFounded_of_isEmpty
instIsEmptyElemEmptyCollection
wellFoundedOn_iff πŸ“–mathematicalβ€”WellFoundedOn
Set
instMembership
β€”Subtype.coe_injective
WellFounded.wellFounded_iff_has_min
WellFounded.has_min
Subtype.preimage_coe_nonempty
RelEmbedding.wellFounded
wellFoundedOn_iff_no_descending_seq πŸ“–mathematicalβ€”WellFoundedOn
Set
instMembership
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
β€”IsStrictOrder.subset
wellFoundedOn_image πŸ“–mathematicalβ€”WellFoundedOn
image
Function.onFun
β€”image_eq_range
wellFoundedOn_range
wellFoundedOn_insert πŸ“–mathematicalβ€”WellFoundedOn
Set
instInsert
β€”β€”
wellFoundedOn_range πŸ“–mathematicalβ€”WellFoundedOn
range
Function.onFun
β€”WellFounded.mono
Acc.of_downward_closed
wellFoundedOn_sdiff_singleton πŸ“–mathematicalβ€”WellFoundedOn
Set
instSDiff
instSingletonSet
β€”wellFoundedOn_insert
insert_diff_singleton
insert_eq_of_mem
wellFoundedOn_singleton πŸ“–mathematicalβ€”WellFoundedOn
Set
instSingletonSet
β€”Finite.wellFoundedOn
finite_singleton
wellFoundedOn_union πŸ“–mathematicalβ€”WellFoundedOn
Set
instUnion
β€”WellFoundedOn.subset
subset_union_left
subset_union_right
WellFoundedOn.union
wellFoundedOn_univ πŸ“–mathematicalβ€”WellFoundedOn
univ
β€”β€”

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
isPWO πŸ“–mathematicalβ€”Set.IsPWOβ€”partiallyWellOrderedOn
instReflLe
isWF πŸ“–mathematicalβ€”Set.IsWF
Preorder.toLT
β€”Set.IsPWO.isWF
isPWO
partiallyWellOrderedOn πŸ“–mathematicalβ€”Set.PartiallyWellOrderedOnβ€”Finite.wellQuasiOrdered
to_subtype
Subrel.instReflSubtype
wellFoundedOn πŸ“–mathematicalβ€”Set.WellFoundedOnβ€”isWF

Set.IsPWO

Theorems

NameKindAssumesProvesValidatesDepends On
exists_le_minimal πŸ“–mathematicalSet.IsPWO
Set
Set.instMembership
Preorder.toLE
Minimal
β€”le_rfl
WellQuasiOrdered.wellFounded
Subrel.instIsPreorderSubtype
instIsPreorderLe
WellFounded.min_mem
WellFounded.not_lt_min
LE.le.trans
exists_minimal πŸ“–mathematicalSet.IsPWO
Set.Nonempty
Minimal
Preorder.toLE
Set
Set.instMembership
β€”exists_le_minimal
exists_minimalFor πŸ“–mathematicalSet.IsPWO
Set.image
Set.Nonempty
MinimalFor
Preorder.toLE
Set
Set.instMembership
β€”exists_minimal
Set.Nonempty.image
Set.mem_image_of_mem
exists_monotone_subseq πŸ“–mathematicalSet.IsPWO
Set
Set.instMembership
Monotone
Nat.instPreorder
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
β€”Set.PartiallyWellOrderedOn.exists_monotone_subseq
instIsPreorderLe
image_of_monotone πŸ“–mathematicalSet.IsPWO
Monotone
Set.imageβ€”Set.PartiallyWellOrderedOn.image_of_monotone_on
Monotone.monotoneOn
image_of_monotoneOn πŸ“–mathematicalSet.IsPWO
MonotoneOn
Set.imageβ€”Set.PartiallyWellOrderedOn.image_of_monotone_on
insert πŸ“–mathematicalSet.IsPWOSet
Set.instInsert
β€”Set.isPWO_insert
isWF πŸ“–mathematicalSet.IsPWOSet.IsWF
Preorder.toLT
β€”Set.PartiallyWellOrderedOn.wellFoundedOn
instIsPreorderLe
mono πŸ“–β€”Set.IsPWO
Set
Set.instHasSubset
β€”β€”Set.PartiallyWellOrderedOn.mono
of_linearOrder πŸ“–mathematicalβ€”Set.IsPWO
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.IsWF.isPWO
Set.IsWF.of_wellFoundedLT
pi πŸ“–mathematicalSet.IsPWOPi.preorder
Set.pi
Set.univ
β€”Set.PartiallyWellOrderedOn.pi
instIsPreorderLe
prod πŸ“–mathematicalSet.IsPWOProd.instPreorder
SProd.sprod
Set
Set.instSProd
β€”Set.PartiallyWellOrderedOn.prod
instIsPreorderLe
union πŸ“–mathematicalSet.IsPWOSet
Set.instUnion
β€”Set.PartiallyWellOrderedOn.union

Set.IsStrictOrder

Theorems

NameKindAssumesProvesValidatesDepends On
subset πŸ“–mathematicalβ€”IsStrictOrder
Set
Set.instMembership
β€”irrefl_of
IsStrictOrder.toIrrefl
trans_of
IsStrictOrder.toIsTrans

Set.IsWF

Definitions

NameCategoryTheorems
min πŸ“–CompOp
23 mathmath: HahnSeries.untop_orderTop_of_ne_zero, min_union, not_lt_min, Finset.smulAntidiagonal_min_smul_min, min_mem, HahnSeries.orderTop_of_ne, Finset.addAntidiagonal_min_add_min, min_smul, min_of_subset_not_lt_min, min_eq_of_lt, HahnSeries.orderTop_of_ne_zero, HahnSeries.order_of_ne, Set.isWF_min_singleton, min_eq_of_le, le_min_iff, min_add, min_mul, min_le_min_of_subset, Finset.mulAntidiagonal_min_mul_min, min_le, HahnSeries.min_le_min_add, min_vadd, Finset.vaddAntidiagonal_min_vadd_min

Theorems

NameKindAssumesProvesValidatesDepends On
insert πŸ“–mathematicalSet.IsWF
Preorder.toLT
Set
Set.instInsert
β€”Set.isWF_insert
isPWO πŸ“–mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.IsPWOβ€”Set.isPWO_iff_isWF
le_min_iff πŸ“–mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Preorder.toLE
min
β€”le_trans
min_le
min_mem
min_eq_of_le πŸ“–mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
Set
Set.instMembership
Preorder.toLE
min
Set.nonempty_of_mem
β€”Set.nonempty_of_mem
eq_of_le_of_not_lt
min_mem
not_lt_min
min_eq_of_lt πŸ“–mathematicalSet.IsWF
Preorder.toLT
Set
Set.instMembership
min
Set.nonempty_of_mem
β€”Set.nonempty_of_mem
not_lt_min
min_mem
min_le πŸ“–mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Set
Set.instMembership
Preorder.toLE
min
β€”le_of_not_gt
not_lt_min
min_le_min_of_subset πŸ“–mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Set
Set.instHasSubset
Preorder.toLE
min
β€”le_min_iff
min_le
min_mem πŸ“–mathematicalSet.IsWF
Preorder.toLT
Set.Nonempty
Set
Set.instMembership
min
β€”Set.nonempty_iff_univ_nonempty
Set.Nonempty.to_subtype
min_of_subset_not_lt_min πŸ“–mathematicalSet.IsWF
Preorder.toLT
Set.Nonempty
Set
Set.instHasSubset
minβ€”not_lt_min
min_mem
min_union πŸ“–mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
min
Set
Set.instUnion
union
Set.union_nonempty
SemilatticeInf.toMin
β€”le_antisymm
union
Set.union_nonempty
le_min
min_le_min_of_subset
Set.subset_union_left
Set.subset_union_right
min_le_iff
min_le
Set.mem_union
min_mem
mono πŸ“–β€”Set.IsWF
Set
Set.instHasSubset
β€”β€”Set.WellFoundedOn.subset
not_lt_min πŸ“–mathematicalSet.IsWF
Preorder.toLT
Set.Nonempty
Set
Set.instMembership
minβ€”WellFounded.not_lt_min
Set.nonempty_iff_univ_nonempty
Set.Nonempty.to_subtype
Set.mem_univ
of_wellFoundedLT πŸ“–mathematicalβ€”Set.IsWFβ€”mono
Set.isWF_univ_iff
Set.subset_univ
union πŸ“–mathematicalSet.IsWF
Preorder.toLT
Set
Set.instUnion
β€”Set.WellFoundedOn.union
instIsStrictOrderLt

Set.PartiallyWellOrderedOn

Definitions

NameCategoryTheorems
IsBadSeq πŸ“–MathDef
2 mathmath: iff_not_exists_isMinBadSeq, iff_forall_not_isBadSeq
IsMinBadSeq πŸ“–MathDef
2 mathmath: exists_min_bad_of_exists_bad, iff_not_exists_isMinBadSeq
minBadSeqOfBadSeq πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ProdLex_iff πŸ“–mathematicalβ€”Set.IsPWO
Lex
Prod.Lex.instPreorder
PartialOrder.toPreorder
Set.image
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
setOf
Set
Set.instMembership
toLex
β€”imageProdLex
fiberProdLex
subsetProdLex
bddAbove_preimage πŸ“–mathematicalSet.PartiallyWellOrderedOnBddAbove
Set.preimage
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Nat.exists_strictMono_subsequence
not_bddAbove_iff
Set.partiallyWellOrderedOn_iff_exists_lt
exists_lt πŸ“–β€”Set.PartiallyWellOrderedOn
Set
Set.instMembership
β€”β€”β€”
exists_min_bad_of_exists_bad πŸ“–mathematicalIsBadSeqIsMinBadSeqβ€”LT.lt.le
exists_monotone_subseq πŸ“–mathematicalSet.PartiallyWellOrderedOn
Set
Set.instMembership
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
β€”WellQuasiOrdered.exists_monotone_subseq
Subrel.instIsPreorderSubtype
exists_notMem_of_gt πŸ“–mathematicalSet.PartiallyWellOrderedOnSet
Set.instMembership
β€”bddAbove_preimage
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
fiberProdLex πŸ“–mathematicalSet.IsPWO
Lex
Prod.Lex.instPreorder
setOf
Set
Set.instMembership
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”Set.ext
Set.image_congr
Set.IsPWO.image_of_monotoneOn
Set.IsPWO.mono
Set.inter_subset_left
Prod.Lex.toLex_le_toLex
iff_forall_not_isBadSeq πŸ“–mathematicalβ€”Set.PartiallyWellOrderedOn
IsBadSeq
β€”Set.partiallyWellOrderedOn_iff_exists_lt
iff_not_exists_isMinBadSeq πŸ“–mathematicalβ€”Set.PartiallyWellOrderedOn
IsBadSeq
IsMinBadSeq
β€”iff_forall_not_isBadSeq
exists_min_bad_of_exists_bad
imageProdLex πŸ“–mathematicalSet.IsPWO
Lex
Prod.Lex.instPreorder
Set.image
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”Set.IsPWO.image_of_monotone
Prod.Lex.monotone_fst
image_of_monotone_on πŸ“–mathematicalSet.PartiallyWellOrderedOnSet.imageβ€”Set.partiallyWellOrderedOn_iff_exists_lt
insert πŸ“–mathematicalSet.PartiallyWellOrderedOnSet
Set.instInsert
β€”Set.partiallyWellOrderedOn_insert
mono πŸ“–β€”Set.PartiallyWellOrderedOn
Set
Set.instHasSubset
β€”β€”β€”
partiallyWellOrderedOn_sublistForallβ‚‚ πŸ“–mathematicalSet.PartiallyWellOrderedOnsetOf
List.SublistForallβ‚‚
β€”isEmpty_or_nonempty
Set.Subsingleton.partiallyWellOrderedOn
List.SublistForallβ‚‚.is_refl
IsPreorder.toRefl
Set.subsingleton_of_subsingleton
Unique.instSubsingleton
iff_not_exists_isMinBadSeq
exists_monotone_subseq
List.head!_mem_self
lt_irrefl
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
IsBadSeq.eq_1
List.tail_subset
LT.lt.trans
not_lt
lt_of_lt_of_le
OrderEmbedding.monotone
trans
List.SublistForallβ‚‚.is_trans
IsPreorder.toIsTrans
add_comm
List.tail_sublistForallβ‚‚_self
OrderEmbedding.lt_iff_lt
le_of_not_gt
List.cons_head!_tail
le_of_lt
pi πŸ“–mathematicalIsPreorder
Set.PartiallyWellOrderedOn
Set.pi
Set.univ
β€”Finset.cons_induction
instIsEmptyFalse
exists_monotone_subseq
Finset.forall_mem_cons
OrderHomClass.mono
RelEmbedding.instRelHomClass
Set.partiallyWellOrderedOn_iff_exists_monotone_subseq
refl
IsPreorder.toRefl
trans
IsPreorder.toIsTrans
prod πŸ“–mathematicalSet.PartiallyWellOrderedOnSProd.sprod
Set
Set.instSProd
β€”Set.partiallyWellOrderedOn_iff_exists_lt
exists_monotone_subseq
exists_lt
OrderEmbedding.strictMono
LT.lt.le
subsetProdLex πŸ“–mathematicalSet.IsPWO
PartialOrder.toPreorder
Set.image
Lex
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
setOf
Set
Set.instMembership
toLex
Prod.Lex.instPreorderβ€”Set.IsPWO.eq_1
Set.partiallyWellOrderedOn_iff_exists_lt
Set.isPWO_iff_exists_monotone_subseq
Set.mem_image_of_mem
Prod.Lex.toLex_le_toLex
LE.le.eq_of_not_lt
union πŸ“–mathematicalSet.PartiallyWellOrderedOnSet
Set.instUnion
β€”Nat.exists_subseq_of_forall_mem_union
exists_lt
OrderEmbedding.strictMono
wellFoundedOn πŸ“–mathematicalSet.PartiallyWellOrderedOnSet.WellFoundedOnβ€”WellQuasiOrdered.wellFounded
Subrel.instIsPreorderSubtype

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
isPWO πŸ“–mathematicalSet.SubsingletonSet.IsPWOβ€”Set.Finite.isPWO
finite
isWF πŸ“–mathematicalSet.SubsingletonSet.IsWF
Preorder.toLT
β€”Set.IsPWO.isWF
isPWO
partiallyWellOrderedOn πŸ“–mathematicalSet.SubsingletonSet.PartiallyWellOrderedOnβ€”Set.Finite.partiallyWellOrderedOn
finite
wellFoundedOn πŸ“–mathematicalSet.SubsingletonSet.WellFoundedOnβ€”Set.Finite.wellFoundedOn
finite

Set.WellFoundedOn

Theorems

NameKindAssumesProvesValidatesDepends On
acc_iff_wellFoundedOn πŸ“–mathematicalβ€”List.TFAE
Set.WellFoundedOn
setOf
Relation.ReflTransGen
β€”Relation.reflTransGen_iff_eq_or_transGen
subset
Relation.TransGen.to_reflTransGen
Acc.of_fibration
Relation.TransGen.head
List.tfae_of_cycle
induction πŸ“–β€”Set.WellFoundedOn
Set
Set.instMembership
β€”β€”β€”
insert πŸ“–mathematicalSet.WellFoundedOnSet
Set.instInsert
β€”Set.wellFoundedOn_insert
mapsTo πŸ“–mathematicalSet.MapsTo
Set.WellFoundedOn
Function.onFunβ€”Subtype.prop
mono πŸ“–β€”Set.WellFoundedOn
Pi.hasLe
Prop.le
Set
Set.instHasSubset
β€”β€”Set.wellFoundedOn_iff
mono' πŸ“–β€”Set.WellFoundedOnβ€”β€”β€”
prod_lex_of_wellFoundedOn_fiber πŸ“–β€”Set.WellFoundedOn
Function.onFun
Set
Set.instInter
Set.preimage
Set.instSingletonSet
β€”β€”WellFounded.prod_lex_of_wellFoundedOn_fiber
WellFounded.mono
WellFounded.onFun
sdiff_singleton πŸ“–mathematicalSet.WellFoundedOnSet
Set.instSDiff
Set.instSingletonSet
β€”Set.wellFoundedOn_sdiff_singleton
sigma_lex_of_wellFoundedOn_fiber πŸ“–mathematicalSet.WellFoundedOn
Function.onFun
Set
Set.instInter
Set.preimage
Set.instSingletonSet
Sigma.Lexβ€”WellFounded.sigma_lex_of_wellFoundedOn_fiber
WellFounded.mono
WellFounded.onFun
subset πŸ“–β€”Set.WellFoundedOn
Set
Set.instHasSubset
β€”β€”mono
le_rfl
union πŸ“–mathematicalSet.WellFoundedOnSet
Set.instUnion
β€”Set.wellFoundedOn_iff_no_descending_seq
Nat.exists_subseq_of_forall_mem_union

WellFounded

Theorems

NameKindAssumesProvesValidatesDepends On
prod_lex_of_wellFoundedOn_fiber πŸ“–β€”Function.onFun
Set.WellFoundedOn
Set.preimage
Set
Set.instSingletonSet
β€”β€”mono
onFun
psigma_lex
Set.wellFoundedOn_range
Prod.lex_iff
PSigma.subtype_ext
sigma_lex_of_wellFoundedOn_fiber πŸ“–mathematicalFunction.onFun
Set.WellFoundedOn
Set.preimage
Set
Set.instSingletonSet
Sigma.Lexβ€”mono
onFun
psigma_lex
Set.wellFoundedOn_range
Sigma.lex_iff
PSigma.subtype_ext
wellFoundedOn πŸ“–mathematicalβ€”Set.WellFoundedOnβ€”β€”

---

← Back to Index