Documentation Verification Report

WellQuasiOrder

πŸ“ Source: Mathlib/Order/WellQuasiOrder.lean

Statistics

MetricCount
DefinitionsWellQuasiOrdered, WellQuasiOrderedLE
2
Theoremsto_wellQuasiOrderedLE, wellQuasiOrdered, finite_of_wellQuasiOrdered, wellQuasiOrderedLE_iff, wellQuasiOrderedLE, wellQuasiOrdered_iff, exists_monotone_subseq, pi, prod, wellFounded, finite_of_isAntichain, to_wellFoundedLT, wqo, instWellQuasiOrderedLEOfWellFoundedLT, instWellQuasiOrderedLEProd, wellQuasiOrderedLE_def, wellQuasiOrderedLE_iff, wellQuasiOrderedLE_iff_wellFoundedLT, wellQuasiOrdered_iff_exists_monotone_subseq, wellQuasiOrdered_le, wellQuasiOrdered_of_isEmpty
21
Total23

Finite

Theorems

NameKindAssumesProvesValidatesDepends On
to_wellQuasiOrderedLE πŸ“–mathematicalβ€”WellQuasiOrderedLE
Preorder.toLE
β€”wellQuasiOrdered
instReflLe
wellQuasiOrdered πŸ“–mathematicalβ€”WellQuasiOrderedβ€”Set.Finite.exists_lt_map_eq_of_forall_mem
instInfiniteNat
Set.mem_univ
Set.finite_univ
refl

IsAntichain

Theorems

NameKindAssumesProvesValidatesDepends On
finite_of_wellQuasiOrdered πŸ“–mathematicalIsAntichain
WellQuasiOrdered
Set.Finiteβ€”LT.lt.ne
Function.Embedding.injective
Subtype.val_injective
eq

OrderIso

Theorems

NameKindAssumesProvesValidatesDepends On
wellQuasiOrderedLE_iff πŸ“–mathematicalβ€”WellQuasiOrderedLEβ€”RelIso.wellQuasiOrdered_iff

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
wellQuasiOrderedLE πŸ“–mathematicalWellQuasiOrderedLE
Preorder.toLE
hasLeβ€”WellQuasiOrdered.pi
instIsPreorderLe
WellQuasiOrderedLE.wqo

RelIso

Theorems

NameKindAssumesProvesValidatesDepends On
wellQuasiOrdered_iff πŸ“–mathematicalβ€”WellQuasiOrderedβ€”Equiv.forall_congr
map_rel_iff

WellQuasiOrdered

Theorems

NameKindAssumesProvesValidatesDepends On
exists_monotone_subseq πŸ“–mathematicalWellQuasiOrderedDFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
β€”exists_increasing_or_nonincreasing_subseq
IsPreorder.toIsTrans
LE.le.lt_or_eq
refl_of
IsPreorder.toRefl
pi πŸ“–β€”IsPreorder
WellQuasiOrdered
β€”β€”Finset.cons_induction
instIsEmptyFalse
exists_monotone_subseq
Finset.forall_mem_cons
OrderHomClass.mono
RelEmbedding.instRelHomClass
wellQuasiOrdered_iff_exists_monotone_subseq
refl
IsPreorder.toRefl
trans
IsPreorder.toIsTrans
prod πŸ“–β€”WellQuasiOrderedβ€”β€”exists_monotone_subseq
OrderEmbedding.strictMono
LT.lt.le
wellFounded πŸ“–β€”WellQuasiOrderedβ€”β€”refl_of
IsPreorder.toRefl
trans_of
IsPreorder.toIsTrans
wellFounded_lt
WellQuasiOrderedLE.to_wellFoundedLT

WellQuasiOrderedLE

Theorems

NameKindAssumesProvesValidatesDepends On
finite_of_isAntichain πŸ“–mathematicalIsAntichain
Preorder.toLE
Set.Finiteβ€”IsAntichain.finite_of_wellQuasiOrdered
wellQuasiOrdered_le
to_wellFoundedLT πŸ“–mathematicalβ€”WellFoundedLT
Preorder.toLT
β€”WellFoundedLT.eq_1
isWellFounded_iff
RelEmbedding.wellFounded_iff_isEmpty
instIsStrictOrderLt
wellQuasiOrdered_le
LT.lt.not_ge
RelEmbedding.map_rel_iff
wqo πŸ“–mathematicalβ€”WellQuasiOrderedβ€”β€”

(root)

Definitions

NameCategoryTheorems
WellQuasiOrdered πŸ“–MathDef
8 mathmath: wellQuasiOrdered_of_isEmpty, wellQuasiOrderedLE_def, Finite.wellQuasiOrdered, WellQuasiOrderedLE.wqo, wellQuasiOrdered_iff_exists_monotone_subseq, RelIso.wellQuasiOrdered_iff, Set.partiallyWellOrderedOn_univ_iff, wellQuasiOrdered_le
WellQuasiOrderedLE πŸ“–CompData
9 mathmath: instWellQuasiOrderedLEOfWellFoundedLT, Set.isPWO_univ_iff, Finite.to_wellQuasiOrderedLE, OrderIso.wellQuasiOrderedLE_iff, wellQuasiOrderedLE_def, wellQuasiOrderedLE_iff_wellFoundedLT, Finsupp.wellQuasiOrderedLE, wellQuasiOrderedLE_iff, instWellQuasiOrderedLEProd

Theorems

NameKindAssumesProvesValidatesDepends On
instWellQuasiOrderedLEOfWellFoundedLT πŸ“–mathematicalβ€”WellQuasiOrderedLE
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”wellQuasiOrderedLE_iff_wellFoundedLT
instWellQuasiOrderedLEProd πŸ“–mathematicalβ€”WellQuasiOrderedLE
Prod.instLE_mathlib
Preorder.toLE
β€”WellQuasiOrdered.prod
instIsPreorderLe
wellQuasiOrdered_le
wellQuasiOrderedLE_def πŸ“–mathematicalβ€”WellQuasiOrderedLE
WellQuasiOrdered
β€”β€”
wellQuasiOrderedLE_iff πŸ“–mathematicalβ€”WellQuasiOrderedLE
Preorder.toLE
WellFoundedLT
Preorder.toLT
Set.Finite
β€”WellQuasiOrderedLE.to_wellFoundedLT
WellQuasiOrderedLE.finite_of_isAntichain
exists_increasing_or_nonincreasing_subseq
instIsTransGt
RelEmbedding.not_wellFounded
instIsStrictOrderLt
instAsymmGt
IsWellFounded.wf
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
lt_trichotomy
OrderEmbedding.strictMono
lt_of_le_not_ge
Set.infinite_range_of_injective
instInfiniteNat
le_rfl
wellQuasiOrderedLE_iff_wellFoundedLT πŸ“–mathematicalβ€”WellQuasiOrderedLE
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
WellFoundedLT
Preorder.toLT
β€”wellQuasiOrderedLE_iff
Set.Subsingleton.finite
IsAntichain.subsingleton
instTrichotomousLe
wellQuasiOrdered_iff_exists_monotone_subseq πŸ“–mathematicalβ€”WellQuasiOrdered
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
β€”WellQuasiOrdered.exists_monotone_subseq
OrderEmbedding.strictMono
wellQuasiOrdered_le πŸ“–mathematicalβ€”WellQuasiOrderedβ€”WellQuasiOrderedLE.wqo
wellQuasiOrdered_of_isEmpty πŸ“–mathematicalβ€”WellQuasiOrderedβ€”β€”

---

← Back to Index