Documentation Verification Report

WithBot

πŸ“ Source: Mathlib/Order/WithBot.lean

Statistics

MetricCount
DefinitionswithBotCongr, withBotSubtypeNe, withTopCongr, withTopSubtypeNe, WithBot, LE, LT, decidableEq, decidableLE, decidableLT, distribLattice, instBoundedOrder, instLE, instLT, instOrderBot, instOrderTop, instPartialOrder, instPreorder, instTop, instUniqueOfIsEmpty, lattice, linearOrder, map, mapβ‚‚, ofDual, semilatticeInf, semilatticeSup, toDual, unbot, unbotA, unbotD, decidableEq, decidableLE, decidableLT, distribLattice, instBot, instBoundedOrder, instLE, instLT, instOrderBot, instOrderTop, instPartialOrder, instPreorder, instUniqueOfIsEmpty, lattice, linearOrder, map, mapβ‚‚, ofDual, semilatticeInf, semilatticeSup, toDual, untop, untopA, untopD
55
TheoremswithBotCongr_apply, withBotCongr_refl, withBotCongr_symm, withBotCongr_trans, withBotSubtypeNe_apply, withBotSubtypeNe_symm_apply_coe, withTopCongr_apply, withTopCongr_refl, withTopCongr_symm, withTopCongr_trans, withTopSubtypeNe_apply, withTopSubtypeNe_symm_apply_coe, withBot, withTop, withBot_map, withTop_map, withBot_map, withTop_map, gt, lt, bot_lt_coe, bot_lt_iff_ne_bot, bot_ne_coe, canLift, coe_eq_coe, coe_eq_top, coe_inf, coe_inj, coe_injective, coe_le, coe_le_coe, coe_le_iff, coe_lt_coe, coe_max, coe_min, coe_mono, coe_ne_bot, coe_strictMono, coe_sup, coe_top, coe_unbot, comp_map, denselyOrdered, denselyOrdered_iff, eq_bot_iff_forall_le, eq_bot_iff_forall_lt, eq_bot_iff_forall_ne, eq_of_forall_coe_le_iff, eq_of_forall_le_coe_iff, eq_top_iff_forall_ge, eq_unbot_iff, exists, exists_coe_le, exists_coe_lt, exists_ne_bot, forall, forall_coe_le, forall_coe_le_iff_le, forall_coe_lt, forall_le_coe_iff_le, forall_ne_bot, ge_of_forall_gt_iff_ge, instWellFoundedGT, instWellFoundedLT, le_bot_iff, le_coe_iff, le_coe_unbotD, le_def, le_def', le_def_aux, le_iff_forall, le_ofDual_iff, le_of_forall_lt_iff_le, le_toDual_iff, le_unbotA, le_unbotA_iff, le_unbotD, le_unbotD_iff, le_unbot_iff, lt_coe_bot, lt_coe_iff, lt_def, lt_def', lt_def_aux, lt_iff_exists, lt_iff_exists_coe, lt_iff_exists_coe_btwn, lt_iff_exists_coe_btwn', lt_ofDual_iff, lt_toDual_iff, lt_unbotA_iff, lt_unbotD_iff, lt_unbot_iff, map_bot, map_coe, map_comm, map_comp_map, map_eq_bot_iff, map_eq_some_iff, map_id, map_injective, map_le_iff, map_map, map_ofDual, map_toDual, mapβ‚‚_bot_left, mapβ‚‚_bot_right, mapβ‚‚_coe_coe, mapβ‚‚_coe_left, mapβ‚‚_coe_right, mapβ‚‚_eq_bot_iff, monotone_iff, monotone_map_iff, ne_bot_iff_exists, noMaxOrder, noTopOrder, none_eq_bot, nontrivial, not_coe_le_bot, not_lt_bot, ofDual_apply_bot, ofDual_apply_coe, ofDual_bot, ofDual_le_iff, ofDual_le_ofDual_iff, ofDual_lt_iff, ofDual_lt_ofDual_iff, ofDual_map, ofDual_symm, ofDual_symm_apply, some_eq_coe, some_eq_map_iff, strictAnti_iff, strictMono_iff, strictMono_map_iff, toDual_apply_bot, toDual_apply_coe, toDual_bot, toDual_le_iff, toDual_le_toDual_iff, toDual_lt_iff, toDual_lt_toDual_iff, toDual_map, toDual_symm, toDual_symm_apply, top_eq_coe, total_le, gt, lt, unbotA_eq_unbot, unbotA_le_iff, unbotA_lt_iff, unbotA_mono, unbotD_bot, unbotD_coe, unbotD_eq_iff, unbotD_eq_self_iff, unbotD_eq_unbotD_iff, unbotD_le_iff, unbotD_lt_iff, unbotD_mono, unbot_coe, unbot_eq_iff, unbot_le_iff, unbot_le_unbot, unbot_le_unbot_iff, unbot_lt_iff, unbot_lt_unbot, unbot_lt_unbot_iff, unbot_mono, gt, lt, bot_eq_coe, canLift, coe_bot, coe_eq_bot, coe_eq_coe, coe_inf, coe_inj, coe_injective, coe_le_coe, coe_le_iff, coe_lt_coe, coe_lt_iff, coe_lt_top, coe_max, coe_min, coe_mono, coe_ne_top, coe_strictMono, coe_sup, coe_top_lt, coe_untop, coe_untopD_le, comp_map, denselyOrdered, denselyOrdered_iff, eq_bot_iff_forall_le, eq_of_forall_coe_le_iff, eq_of_forall_le_coe_iff, eq_top_iff_forall_ge, eq_top_iff_forall_gt, eq_top_iff_forall_ne, eq_untop_iff, exists, exists_le_coe, exists_lt_coe, exists_ne_top, forall, forall_coe_le_iff_le, forall_le_coe, forall_le_coe_iff_le, forall_lt_coe, forall_ne_top, ge_of_forall_gt_iff_ge, instWellFoundedGT, instWellFoundedLT, le_coe, le_coe_iff, le_def, le_def', le_iff_forall, le_ofDual_iff, le_of_forall_lt_iff_le, le_toDual_iff, le_untopA_iff, le_untopD_iff, le_untop_iff, lt_def, lt_def', lt_iff_exists, lt_iff_exists_coe, lt_iff_exists_coe_btwn, lt_iff_exists_coe_btwn', lt_ofDual_iff, lt_toDual_iff, lt_top_iff_ne_top, lt_untopA_iff, lt_untopD_iff, lt_untop_iff, map_coe, map_comm, map_comp_map, map_eq_some_iff, map_eq_top_iff, map_id, map_injective, map_le_iff, map_map, map_ofDual, map_toDual, map_top, mapβ‚‚_coe_coe, mapβ‚‚_coe_left, mapβ‚‚_coe_right, mapβ‚‚_eq_top_iff, mapβ‚‚_top_left, mapβ‚‚_top_right, monotone_iff, monotone_map_iff, ne_top_iff_exists, noBotOrder, noMinOrder, none_eq_top, nontrivial, not_top_le_coe, not_top_lt, ofDual_apply_coe, ofDual_apply_top, ofDual_le_iff, ofDual_le_ofDual_iff, ofDual_lt_iff, ofDual_lt_ofDual_iff, ofDual_map, ofDual_symm, ofDual_symm_apply, ofDual_top, some_eq_coe, some_eq_map_iff, strictAnti_iff, strictMono_iff, strictMono_map_iff, toDual_apply_coe, toDual_apply_top, toDual_le_iff, toDual_le_toDual_iff, toDual_lt_iff, toDual_lt_toDual_iff, toDual_map, toDual_symm, toDual_symm_apply, toDual_top, top_le_iff, top_ne_coe, total_le, gt, lt, untopA_eq_untop, untopA_le, untopA_le_iff, untopA_lt_iff, untopA_mono, untopD_coe, untopD_eq_iff, untopD_eq_self_iff, untopD_eq_untopD_iff, untopD_le, untopD_le_iff, untopD_lt_iff, untopD_mono, untopD_top, untop_coe, untop_eq_iff, untop_le_iff, untop_le_untop_iff, untop_lt_iff, untop_lt_untop_iff, untop_mono
318
Total373

Equiv

Definitions

NameCategoryTheorems
withBotCongr πŸ“–CompOp
5 mathmath: withBotCongr_apply, OrderIso.withBotCongr_symm_apply, withBotCongr_refl, withBotCongr_symm, withBotCongr_trans
withBotSubtypeNe πŸ“–CompOp
2 mathmath: withBotSubtypeNe_symm_apply_coe, withBotSubtypeNe_apply
withTopCongr πŸ“–CompOp
5 mathmath: withTopCongr_trans, withTopCongr_apply, withTopCongr_refl, withTopCongr_symm, OrderIso.withTopCongr_symm_apply
withTopSubtypeNe πŸ“–CompOp
2 mathmath: withTopSubtypeNe_symm_apply_coe, withTopSubtypeNe_apply

Theorems

NameKindAssumesProvesValidatesDepends On
withBotCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
EquivLike.toFunLike
instEquivLike
withBotCongr
WithBot.map
β€”β€”
withBotCongr_refl πŸ“–mathematicalβ€”withBotCongr
refl
WithBot
β€”ext
WithBot.map_id
withBotCongr_symm πŸ“–mathematicalβ€”withBotCongr
symm
WithBot
β€”β€”
withBotCongr_trans πŸ“–mathematicalβ€”withBotCongr
trans
WithBot
β€”ext
WithBot.map_map
withBotSubtypeNe_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
Bot.bot
WithBot.bot
EquivLike.toFunLike
instEquivLike
withBotSubtypeNe
WithBot.unbot
β€”β€”
withBotSubtypeNe_symm_apply_coe πŸ“–mathematicalβ€”WithBot
Bot.bot
WithBot.bot
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
withBotSubtypeNe
WithBot.some
β€”β€”
withTopCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
EquivLike.toFunLike
instEquivLike
withTopCongr
WithTop.map
β€”β€”
withTopCongr_refl πŸ“–mathematicalβ€”withTopCongr
refl
WithTop
β€”ext
WithTop.map_id
withTopCongr_symm πŸ“–mathematicalβ€”withTopCongr
symm
WithTop
β€”β€”
withTopCongr_trans πŸ“–mathematicalβ€”withTopCongr
trans
WithTop
β€”ext
WithTop.map_map
withTopSubtypeNe_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
Top.top
WithTop.top
EquivLike.toFunLike
instEquivLike
withTopSubtypeNe
WithTop.untop
β€”β€”
withTopSubtypeNe_symm_apply_coe πŸ“–mathematicalβ€”WithTop
Top.top
WithTop.top
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
withTopSubtypeNe
WithTop.some
β€”β€”

IsMax

Theorems

NameKindAssumesProvesValidatesDepends On
withBot πŸ“–mathematicalIsMaxWithBot
WithBot.instLE
WithBot.some
β€”β€”

IsMin

Theorems

NameKindAssumesProvesValidatesDepends On
withTop πŸ“–mathematicalIsMinWithTop
WithTop.instLE
WithTop.some
β€”WithTop.top_le_iff
WithTop.coe_ne_top
le_top
WithTop.coe_le_coe

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
withBot_map πŸ“–mathematicalMonotoneWithBot
WithBot.instPreorder
WithBot.map
β€”WithBot.monotone_map_iff
withTop_map πŸ“–mathematicalMonotoneWithTop
WithTop.instPreorder
WithTop.map
β€”WithTop.monotone_map_iff

StrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
withBot_map πŸ“–mathematicalStrictMonoWithBot
WithBot.instPreorder
WithBot.map
β€”WithBot.strictMono_map_iff
withTop_map πŸ“–mathematicalStrictMonoWithTop
WithTop.instPreorder
WithTop.map
β€”WithTop.strictMono_map_iff

WithBot

Definitions

NameCategoryTheorems
LE πŸ“–CompData
1 mathmath: le_def_aux
LT πŸ“–CompData
1 mathmath: lt_def_aux
decidableEq πŸ“–CompOp
6 mathmath: mul_bot', Finset.max_mem_image_coe, Finset.max_mem_insert_bot_image_coe, mul_def, bot_mul', Polynomial.integralNormalization_coeff
decidableLE πŸ“–CompOpβ€”
decidableLT πŸ“–CompOpβ€”
distribLattice πŸ“–CompOpβ€”
instBoundedOrder πŸ“–CompOpβ€”
instLE πŸ“–CompOp
61 mathmath: coe_toDualTopEquiv_eq, add_le_add_iff_right', le_unbotA_iff, coe_le_zero, WithTop.toDualBotEquiv_coe, le_unbot_iff, addRightMono, not_coe_le_bot, zeroLEOneClass, orderIsoPUnitSumLex_symm_inl, addLeftMono, WithBotTop.coe_le_coe, WithTop.le_toDual_iff, ofDual_le_iff, orderIsoPUnitSumLex_symm_inr, noTopOrder, add_le_add_iff_left, IsMax.withBot, addLECancellable_of_ne_bot, coe_le_iff, le_unbotD_iff, le_coe_iff, coe_le, le_iff_forall, le_toDual_iff, WithTop.toDualBotEquiv_symm_top, add_le_add_iff_right, addLECancellable_coe, toDualTopEquiv_coe, coe_le_coe, toDual_le_iff, WithTop.ofDual_le_ofDual_iff, coe_nonneg, toDualTopEquiv_symm_bot, unbot_le_unbot, toDualTopEquiv_symm_coe, unbotD_le_iff, WithTop.toDual_le_toDual_iff, unbot_le_unbot_iff, WithTop.le_ofDual_iff, le_ofDual_iff, orderIsoPUnitSumLex_toLex, total_le, WithTop.toDualBotEquiv_symm_coe, unbot_le_iff, WithTop.ofDual_le_iff, le_add_self, toDualTopEquiv_bot, le_def', toDual_le_toDual_iff, le_bot_iff, le_self_add, WithTop.toDual_le_iff, le_def, ofDual_le_ofDual_iff, unbotA_le_iff, WithTop.coe_toDualBotEquiv, WithTop.toDualBotEquiv_top, coe_le_one, orderIsoPUnitSumLex_bot, one_le_coe
instLT πŸ“–CompOp
49 mathmath: lt_ofDual_iff, coe_lt_one, lt_unbotA_iff, WithTop.lt_toDual_iff, lt_coe_iff, one_lt_coe, addLeftReflectLT, lt_unbotD_iff, unbot_lt_iff, coe_pos, WithTop.ofDual_lt_ofDual_iff, unbotD_lt_iff, WithTop.toDual_lt_iff, coe_lt_zero, lt_iff_exists_coe, bot_lt_add, bot_neg, bot_lt_natCast, lt_def, instWellFoundedLT, ofDual_lt_iff, toDual_lt_toDual_iff, lt_unbot_iff, ofDual_lt_ofDual_iff, noMaxOrder, WithTop.toDual_lt_toDual_iff, lt_toDual_iff, not_lt_bot, denselyOrdered, coe_lt_coe, bot_lt_iff_ne_bot, denselyOrdered_iff, bot_lt_coe, sum_lt_bot, toDual_lt_iff, unbotA_lt_iff, WithTop.ofDual_lt_iff, lt_def', unbot_lt_unbot, instWellFoundedGT, bot_lt_sum_iff, addRightReflectLT, unbot_lt_unbot_iff, lt_iff_exists, WithTop.lt_ofDual_iff, WithBotTop.coe_lt_coe, bot_lt_one, add_lt_add_iff_left, add_lt_add_iff_right
instOrderBot πŸ“–CompOp
19 mathmath: LatticeHom.withTopWithBot_apply, LatticeHom.coe_withTopWithBot, BoxIntegral.Box.disjoint_withBotCoe, LatticeHom.withTopWithBot_id, LatticeHom.withTopWithBot_comp, LatticeHom.withTopWithBot'_toFun, Finset.max_eq_sup_coe, Finset.coe_sup', Polynomial.degree_sum_le, Finset.coe_sup_of_nonempty, Finset.max_eq_sup_withBot, BoxIntegral.Box.not_disjoint_coe_iff_nonempty_inter, LatticeHom.withTopWithBot_toFun, BoxIntegral.Box.disjoint_splitLower_splitUpper, BoxIntegral.Box.disjoint_coe, Polynomial.supDegree_eq_degree, Polynomial.degree_sum_eq_of_disjoint, AddMonoidAlgebra.supDegree_withBot_some_comp, Finset.sup_of_mem
instOrderTop πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
7 mathmath: BoxIntegral.Box.disjoint_withBotCoe, BoxIntegral.Box.not_disjoint_coe_iff_nonempty_inter, BoxIntegral.Box.disjoint_splitLower_splitUpper, BoxIntegral.Box.disjoint_coe, isOrderedAddMonoid, instArchimedean, instIsOrderedRing
instPreorder πŸ“–CompOp
347 mathmath: Polynomial.degree_map_le, Polynomial.modByMonic_eq_self_iff, IsAlgClosed.roots_eq_zero_iff_degree_nonpos, Polynomial.degree_mul_le, Order.LTSeries.length_le_krullDim, Polynomial.exists_degree_le_of_mem_span_of_finite, instPosMulStrictMono, Order.krullDim_le_of_strictComono_and_surj, WithBotTop.coe_strictMono, ringKrullDim_succ_le_ringKrullDim_polynomial, Order.krullDim_lt_coe_iff, Polynomial.coe_lt_degree, CategoryTheory.Retract.injectiveDimension_le, Polynomial.degree_le_degree, lt_iff_exists_coe_btwn, trichotomous.gt, CategoryTheory.injectiveDimension_le_iff, subtypeOrderIso_symm_apply, Cubic.degree_of_b_eq_zero, Polynomial.degree_quadratic_lt, instMulPosMono, Polynomial.degree_pow_le, Order.krullDim_nonneg_iff, Ring.krullDimLE_iff, Polynomial.zero_le_degree_iff, eq_bot_iff_forall_lt, Polynomial.mod_eq_self_iff, le_of_forall_lt_iff_le, range_coe, PowerSeries.degree_weierstrassMod_lt, Polynomial.degree_gcd_le_left, Order.krullDim_pos_iff, Order.krullDim_le_one_iff, image_coe_Ioo, Polynomial.degree_le_of_dvd, Polynomial.div_tendsto_zero_iff_degree_lt, BoxIntegral.Box.splitUpper_le, Polynomial.degree_lt_degree_mul_X, Polynomial.Splits.degree_le_one_of_irreducible, Polynomial.divByMonic_eq_zero_iff, Order.le_krullDim_iff, minpoly.degree_pos, lt_add_one_iff, Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg, Polynomial.degree_list_prod_le, IsWellOrder.lt, Finset.max_mono, ringKrullDim_succ_le_ringKrullDim_powerseries, Lagrange.eq_interpolate_iff, lt_succ, Order.coheight_le_krullDim, Polynomial.degree_pos_of_root, Order.krullDim_nonpos_iff_forall_isMax, PowerSeries.degree_trunc_lt, Polynomial.card_roots_map_le_degree, Cubic.degree_of_a_eq_zero', ringKrullDim_nonneg_of_nontrivial, eq_top_iff_forall_ge, Ioc_bot_coe, Order.krullDim_nonpos_iff_forall_isMin, Polynomial.degree_mono, Polynomial.degree_C_lt_degree_C_mul_X, Polynomial.tendsto_atBot_iff_leadingCoeff_nonpos, List.coe_le_maximum_iff, Ioi_coe, monotone_map_iff, Module.supportDim_le_of_injective, instPosMulReflectLE, OrderHom.withBotMap_coe, minpoly.degree_le, image_coe_Ici, Ico_bot_coe, Polynomial.abs_tendsto_atTop_iff, PowerSeries.IsWeierstrassDivisionAt.degree_lt, Polynomial.degree_lt_wf, Polynomial.degree_cubic_lt, strictAnti_iff, ge_of_forall_gt_iff_ge, Order.height_le_krullDim, Polynomial.degree_modByMonic_le, Polynomial.natDegree_lt_natDegree_iff, CategoryTheory.injectiveDimension_ge_iff, OrderIso.withBotCongr_symm_apply, Polynomial.degree_divX_lt, exists_coe_le, Order.bot_lt_krullDim, Polynomial.degree_eraseLead_lt, instMulPosStrictMono, topologicalKrullDim_subspace_le, Polynomial.degree_X_pow_le, StrictMono.withBot_map, succ_mono, topologicalKrullDim_zero_of_discreteTopology, ringKrullDim_quotient_le, Polynomial.degree_monomial_le, pred_coe, Polynomial.natDegree_lt_iff_degree_lt, Lagrange.degree_interpolate_erase_lt, ringKrullDim_succ_le_of_surjective, BoxIntegral.Box.splitLower_le, Ideal.primeHeight_le_ringKrullDim, Polynomial.degree_quadratic_le, CategoryTheory.projectiveDimension_lt_iff, Lagrange.degree_interpolate_lt, preimage_coe_Ioc, Polynomial.abs_tendsto_atBot_iff, Polynomial.degree_X_le, coe_wcovBy_coe, preimage_coe_Ioi, ringKrullDim_le_iff_height_le, Polynomial.degree_derivative_lt, minpoly.degree_le_of_ne_zero, div_eq_quo_add_sum_rem_div, PowerBasis.mem_span_pow', Order.krullDim_nonpos_of_subsingleton, Iio_coe, WithZero.toMulBot_lt, Polynomial.degree_erase_lt, eq_bot_iff_forall_le, IsInducing.topologicalKrullDim_le, Polynomial.degree_le_of_natDegree_le, ringKrullDim_le_ringKrullDim_quotient_add_card, IsDiscreteValuationRing.bot_lt_toWithBotNat_iff, image_coe_Iio, Ideal.height_le_ringKrullDim_quotient_add_one, Iic_coe, Polynomial.degree_sum_le, Polynomial.degree_pos_of_ne_zero_of_nonunit, Irreducible.degree_pos, image_coe_Ico, Ioc_coe, instPosMulMono, Polynomial.Monic.degree_pos, lt_iff_exists_coe_btwn', Polynomial.degree_le_natDegree, image_coe_Ioi, monotone_iff, Polynomial.degree_divByMonic_le, Polynomial.degree_le_mul_left, IsClosedEmbedding.topologicalKrullDim_le, ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank, Polynomial.exists_multiset_roots, Finset.max_le_iff, Ideal.mem_leadingCoeffNth, Monotone.withBot_map, preimage_coe_Iio, Polynomial.degree_C_lt, Polynomial.degree_C_mul_X_pow_le, Polynomial.degree_intCast_le, Polynomial.div_eq_zero_iff, image_coe_Iic, Nat.WithBot.lt_zero_iff, Polynomial.exists_degree_le_of_mem_span, bot_covBy_coe, image_coe_Ioc, Order.krullDim_le_one_iff_of_boundedOrder, Polynomial.eraseLead_degree_le, OrderIso.withBotCongr_refl, Polynomial.degree_X_sub_C_le, preimage_coe_Ici, Polynomial.degree_C_mul_X_le, preimage_coe_Ico, Ideal.height_le_ringKrullDim_quotient_add_encard, Polynomial.degree_wronskian_lt_add, orderSucc_bot, pred_coe_of_not_isMin, Nat.WithBot.one_le_iff_zero_lt, Polynomial.degree_one_le, Polynomial.tendsto_nhds_iff, succ_unbot, ringKrullDim_quotient_succ_le_of_nonZeroDivisor, OrderIso.withBotCongr_apply, strictMono_iff, Cubic.degree_of_a_eq_zero, map_le_iff, Cubic.equiv_symm_apply_b, ringKrullDim_add_natCard_le_ringKrullDim_mvPolynomial, instIsEmptySuccOrderOfNonempty, Polynomial.Splits.splits, minpoly.IsIntegrallyClosed.degree_le_of_ne_zero, Polynomial.degree_prod_le, OrderEmbedding.withBotCoe_apply, Polynomial.div_eq_quo_add_rem_div, BoxIntegral.Box.withBotCoe_subset_iff, Polynomial.degree_zero_le, Polynomial.Monic.degree_pos_of_not_isUnit, Polynomial.isBoundedUnder_abs_atBot_iff, Order.one_le_krullDim_iff, Order.krullDim_le_of_strictMono, Polynomial.degree_pos_of_not_isUnit_of_dvd_monic, ringKrullDim_le_iff_isMaximal_height_le, strictMono_map_iff, ringKrullDim_le_ringKrullDim_add_card, Lagrange.degree_interpolate_le, CategoryTheory.projectiveDimension_le_iff, minpoly.min, Module.supportDim_le_ringKrullDim, Polynomial.mem_closure_X_union_C, Module.supportDim_le_supportDim_quotSMulTop_succ, addLECancellable_iff_ne_bot, CategoryTheory.projectiveDimension_ge_iff, WithBotTop.coe_monotone, Polynomial.degree_multiset_prod_le, ringKrullDim_lt_top, List.not_maximum_lt_of_mem', CategoryTheory.injectiveDimension_lt_iff, List.le_maximum_of_mem', Polynomial.degree_sub_le, preimage_coe_Icc, Polynomial.ringKrullDim_le, Matrix.charpoly_sub_diagonal_degree_lt, Polynomial.degree_smul_le, Nat.WithBot.lt_one_iff_le_zero, Cubic.equiv_symm_apply_c, lt_coe_bot, Polynomial.degree_lt_degree, Polynomial.degree_le_iff_coeff_zero, orderSucc_coe, Polynomial.isBoundedUnder_abs_atTop_iff, Polynomial.card_roots, pred_coe_of_isMin, Polynomial.ofFn_degree_lt, subtypeOrderIso_apply_coe, Ico_coe, Order.krullDim_le_one_iff_forall_isMax, Order.krullDim_withBot, Order.krullDim_pos_iff_of_orderTop, Polynomial.degree_modByMonic_lt, instMulPosReflectLT, Polynomial.degree_lt_iff_coeff_zero, Polynomial.div_tendsto_atBot_zero_iff_degree_lt, Icc_coe, div_eq_quo_add_rem_div_add_rem_div, Polynomial.degree_le_zero_iff, coe_mono, Order.krullDim_pos_iff_of_orderBot, Polynomial.degree_add_le, preimage_coe_Iic, List.maximum_mono, Polynomial.degree_pos_of_aeval_root, Order.coheight_coe_withBot, Module.supportDim_le_supportDim_quotSMulTop_succ_of_mem_jacobson, Ioo_coe, Polynomial.le_degree_of_ne_zero, Cubic.equiv_apply_coe, Polynomial.le_degree_of_mem_supp, Polynomial.degree_annIdealGenerator_le_of_mem, Ico_coe_coe, height_le_ringKrullDim_quotient_add_spanFinrank, Polynomial.abs_isBoundedUnder_iff, instMulPosReflectLE, Polynomial.natDegree_eq_zero_iff_degree_le_zero, Polynomial.degree_sub_lt, PowerSeries.isWeierstrassDivisionAt_iff, Polynomial.degree_update_le, coeOrderHom_apply, ringKrullDim_add_enatCard_le_ringKrullDim_mvPolynomial, Polynomial.Sequence.degree_strictMono, Ioo_coe_coe, Polynomial.degree_pos_of_irreducible, Cubic.degree_of_b_eq_zero', Order.KrullDimLE.krullDim_le, forall_le_coe_iff_le, ringKrullDim_le_ringKrullDim_add_spanFinrank, Polynomial.degree_cubic_le, OrderIso.withBotCongr_trans, Cubic.equiv_symm_apply_d, Ioo_bot_coe, Polynomial.degree_div_le, Irreducible.degree_le_two, Polynomial.degree_linear_le, forall_coe_le_iff_le, preimage_coe_Ioc_bot, Order.krullDim_nonneg, Polynomial.degree_linear_lt_degree_C_mul_X_sq, Polynomial.degree_cyclotomic_pos, WithZero.toMulBot_le, preimage_coe_Ioi_bot, Polynomial.degree_pos_of_evalβ‚‚_root, Polynomial.degree_quadratic_lt_degree_C_mul_X_cb, denselyOrdered_set_iff_subsingleton, Cubic.degree_of_c_eq_zero, Cubic.equiv_symm_apply_a, Order.krullDim_le_one_iff_forall_isMin, Order.height_coe_withBot, Polynomial.natDegree_pos_iff_degree_pos, Polynomial.degree_mod_lt, Ioc_coe_coe, IsDiscreteValuationRing.toWithBotNat_le_toWithBotNat_iff, Polynomial.mem_degreeLE, CategoryTheory.Retract.projectiveDimension_le, Polynomial.degree_sum_fin_lt, succ_eq_succ, coe_covBy_coe, Polynomial.degree_map_lt, Ideal.height_le_ringKrullDim_of_ne_top, Cubic.degree_of_c_eq_zero', Polynomial.natDegree_le_iff_degree_le, Polynomial.Sequence.basis_degree_strictMono, succ_strictMono, instPosMulReflectLT, List.le_maximum_of_length_pos_iff, exists_coe_lt, LaurentPolynomial.degree_T_le, Polynomial.div_tendsto_atTop_zero_iff_degree_lt, ringKrullDim_le_of_surjective, image_coe_Icc, Nat.WithBot.coe_nonneg, ringKrullDim_le_ringKrullDim_quotSMulTop_succ, Module.supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes, OrderEmbedding.withBotMap_apply, Polynomial.degree_erase_le, Module.supportDim_le_of_surjective, le_coe_unbotD, Finset.le_max, IsWellOrder.gt, Icc_coe_coe, Polynomial.degree_derivative_le, Order.bot_lt_krullDim_iff, Polynomial.mem_degreeLT, Polynomial.Monic.degree_le_zero_iff_eq_one, preimage_coe_Ioo_bot, PowerBasis.dim_le_degree_of_root, Ici_coe, trichotomous.lt, WithZero.toMulBot_strictMono, one_le_iff_pos, Icc_bot_coe, LaurentPolynomial.degree_C_le, Polynomial.degree_list_sum_le, Polynomial.degree_linear_lt, coe_strictMono, Polynomial.degree_natCast_le, Polynomial.degree_modByMonic_le_left, ringKrullDim_le_ringKrullDim_quotient_add_encard, bot_wcovBy_coe, Order.krullDimLE_iff, Polynomial.exists_mul_add_mul_eq_C_resultant, Polynomial.roots_def, LaurentPolynomial.degree_C_mul_T_le, WithTop.eq_bot_iff_forall_le, degree_radical_le, Polynomial.degree_gcd_le_right, Polynomial.degree_C_le, add_one_le_iff, OrderIso.withBotCongr_symm, preimage_coe_Ioo
instTop πŸ“–CompOp
18 mathmath: Order.krullDim_of_noMaxOrder, Order.krullDim_eq_top, coe_eq_top, eq_top_iff_forall_ge, Order.krullDim_int, Interval.dual_top, top_eq_coe, NonemptyInterval.coe_top_interval, Order.krullDim_enat, Interval.coe_top, sInf_empty, Finset.max_eq_top, ringKrullDim_lt_top, WithBotTop.rec_top, coe_top, Order.krullDim_of_noMinOrder, Order.krullDim_nat, Order.krullDim_eq_top_iff
instUniqueOfIsEmpty πŸ“–CompOpβ€”
lattice πŸ“–CompOp
12 mathmath: LatticeHom.withTopWithBot_apply, LatticeHom.coe_withTopWithBot, LatticeHom.withTopWithBot_id, LatticeHom.withTopWithBot_comp, LatticeHom.withTopWithBot'_toFun, LatticeHom.withBot_id, LatticeHom.withBot_toFun, LatticeHom.withTopWithBot_toFun, LatticeHom.withBot_comp, LatticeHom.withBot'_toFun, LatticeHom.coe_withBot, LatticeHom.withBot_apply
linearOrder πŸ“–CompOp
1 mathmath: Finset.fold_max_add
map πŸ“–CompOp
54 mathmath: ofDual_map, LatticeHom.withTopWithBot_apply, map_ofNat, map_eq_one_iff, map_eq_natCast_iff, map_comm, LatticeHom.coe_withTopWithBot, Equiv.withBotCongr_apply, Finset.map_ofDual_max, ofNat_eq_map_iff, map_ofDual, map_eq_zero_iff, monotone_map_iff, OrderHom.withBotMap_coe, toDual_map, StrictMono.withBot_map, map_bot, Finset.map_toDual_max, mapβ‚‚_coe_left, map_natCast, AddMonoidHom.withBotMap_apply, map_eq_some_iff, map_map, InfHom.withBot_toFun, natCast_eq_map_iff, map_one, Monotone.withBot_map, map_add, some_eq_map_iff, map_eq_bot_iff, LatticeHom.withTopWithBot_toFun, OrderIso.withBotCongr_apply, map_le_iff, WithTop.ofDual_map, SupHom.withBot_toFun, map_comp_map, strictMono_map_iff, map_eq_ofNat_iff, comp_map, zero_eq_map_iff, mapβ‚‚_coe_right, map_injective, ZeroHom.withBotMap_apply, LatticeHom.coe_withBot, WithTop.toDual_map, map_coe, OneHom.withBotMap_apply, map_id, OrderEmbedding.withBotMap_apply, map_zero, AddHom.withBotMap_apply, LatticeHom.withBot_apply, map_toDual, one_eq_map_iff
mapβ‚‚ πŸ“–CompOp
7 mathmath: mapβ‚‚_eq_bot_iff, mapβ‚‚_coe_left, mapβ‚‚_bot_left, mul_def, mapβ‚‚_coe_right, mapβ‚‚_bot_right, mapβ‚‚_coe_coe
ofDual πŸ“–CompOp
20 mathmath: coe_toDualTopEquiv_eq, ofDual_map, lt_ofDual_iff, WithTop.lt_toDual_iff, WithTop.le_toDual_iff, ofDual_le_iff, map_ofDual, ofDual_apply_coe, WithTop.toDual_lt_iff, ofDual_lt_iff, ofDual_lt_ofDual_iff, ofDual_symm_apply, WithTop.toDual_symm_apply, WithTop.toDual_symm, ofDual_bot, le_ofDual_iff, ofDual_symm, WithTop.toDual_le_iff, ofDual_le_ofDual_iff, ofDual_apply_bot
semilatticeInf πŸ“–CompOp
6 mathmath: coe_inf, coe_min, InfHom.withBot_toFun, InfHom.withBot'_toFun, InfHom.withBot_comp, InfHom.withBot_id
semilatticeSup πŸ“–CompOp
30 mathmath: Finset.max_union, List.maximum_cons, SupHom.withBot_id, Finset.max_pair, Finset.max_eq_sup_coe, Finset.fold_max_add, Finset.coe_sup', LatticeHom.withBot_toFun, WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, Polynomial.degree_sum_le, Finset.coe_sup_of_nonempty, Finset.max_eq_sup_withBot, SupHom.withBot_comp, Polynomial.degree_add_le_of_le, SupHom.withBot_toFun, SupHom.withBot'_toFun, Polynomial.supDegree_eq_degree, Polynomial.degree_sub_le, Finset.max_insert, Polynomial.degree_sum_eq_of_disjoint, Polynomial.degree_add_le, Polynomial.degree_update_le, coe_max, coe_sup, AddMonoidAlgebra.supDegree_withBot_some_comp, Polynomial.degree_sub_le_of_le, Polynomial.degree_add_eq_of_leadingCoeff_add_ne_zero, List.maximum_concat, Finset.sup_of_mem, List.maximum_append
toDual πŸ“–CompOp
19 mathmath: WithTop.ofDual_symm, toDual_map, le_toDual_iff, toDual_bot, toDual_apply_bot, toDual_le_iff, toDual_apply_coe, toDual_lt_toDual_iff, lt_toDual_iff, WithTop.le_ofDual_iff, WithTop.ofDual_le_iff, toDual_lt_iff, toDual_le_toDual_iff, WithTop.ofDual_lt_iff, WithTop.ofDual_symm_apply, toDual_symm_apply, toDual_symm, WithTop.lt_ofDual_iff, map_toDual
unbot πŸ“–CompOp
18 mathmath: le_unbot_iff, unbotA_eq_unbot, unbot_eq_iff, eq_unbot_iff, coe_unbot, unbot_one, unbot_mono, unbot_lt_iff, unbot_zero, lt_unbot_iff, unbot_coe, succ_unbot, unbot_le_unbot, Equiv.withBotSubtypeNe_apply, unbot_le_unbot_iff, unbot_le_iff, unbot_lt_unbot, unbot_lt_unbot_iff
unbotA πŸ“–CompOp
7 mathmath: le_unbotA_iff, lt_unbotA_iff, unbotA_eq_unbot, unbotA_mono, le_unbotA, unbotA_lt_iff, unbotA_le_iff
unbotD πŸ“–CompOp
16 mathmath: List.getD_max?_eq_unbotD_maximum, unbotD_mono, lt_unbotD_iff, le_unbotD_iff, unbotD_bot, unbotD_lt_iff, unbotD_eq_iff, unbotD_zero_mul, unbotD_le_iff, unbotD_one, unbotD_zero, unbotD_coe, le_unbotD, unbotD_eq_unbotD_iff, le_coe_unbotD, unbotD_eq_self_iff

Theorems

NameKindAssumesProvesValidatesDepends On
bot_lt_coe πŸ“–mathematicalβ€”WithBot
instLT
Bot.bot
bot
some
β€”β€”
bot_lt_iff_ne_bot πŸ“–mathematicalβ€”WithBot
instLT
Bot.bot
bot
β€”β€”
bot_ne_coe πŸ“–β€”β€”β€”β€”β€”
canLift πŸ“–mathematicalβ€”CanLift
WithBot
some
Bot.bot
bot
β€”coe_unbot
coe_eq_coe πŸ“–mathematicalβ€”someβ€”β€”
coe_eq_top πŸ“–mathematicalβ€”some
Top.top
WithBot
instTop
β€”coe_eq_coe
coe_inf πŸ“–mathematicalβ€”some
SemilatticeInf.toMin
WithBot
semilatticeInf
β€”β€”
coe_inj πŸ“–mathematicalβ€”someβ€”β€”
coe_injective πŸ“–mathematicalβ€”WithBot
some
β€”Option.some_injective
coe_le πŸ“–mathematicalβ€”WithBot
instLE
some
β€”coe_le_coe
coe_le_coe πŸ“–mathematicalβ€”WithBot
instLE
some
β€”β€”
coe_le_iff πŸ“–mathematicalβ€”WithBot
instLE
some
β€”β€”
coe_lt_coe πŸ“–mathematicalβ€”WithBot
instLT
some
β€”β€”
coe_max πŸ“–mathematicalβ€”some
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
WithBot
semilatticeSup
β€”β€”
coe_min πŸ“–mathematicalβ€”some
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
WithBot
semilatticeInf
β€”β€”
coe_mono πŸ“–mathematicalβ€”Monotone
WithBot
instPreorder
some
β€”coe_le_coe
coe_ne_bot πŸ“–β€”β€”β€”β€”β€”
coe_strictMono πŸ“–mathematicalβ€”StrictMono
WithBot
instPreorder
some
β€”coe_lt_coe
coe_sup πŸ“–mathematicalβ€”some
SemilatticeSup.toMax
WithBot
semilatticeSup
β€”β€”
coe_top πŸ“–mathematicalβ€”some
Top.top
WithBot
instTop
β€”β€”
coe_unbot πŸ“–mathematicalβ€”some
unbot
β€”β€”
comp_map πŸ“–mathematicalβ€”mapβ€”map_map
denselyOrdered πŸ“–mathematicalβ€”DenselyOrdered
WithBot
instLT
β€”denselyOrdered_iff
denselyOrdered_iff πŸ“–mathematicalβ€”DenselyOrdered
WithBot
instLT
β€”exists_between
coe_lt_coe
DenselyOrdered.dense
eq_bot_iff_forall_le πŸ“–mathematicalβ€”Bot.bot
WithBot
bot
Preorder.toLE
instPreorder
some
β€”eq_bot_iff_forall_ne
not_isBot
coe_le_coe
eq_bot_iff_forall_lt πŸ“–mathematicalβ€”Bot.bot
WithBot
bot
Preorder.toLT
instPreorder
some
β€”lt_irrefl
eq_bot_iff_forall_ne πŸ“–mathematicalβ€”Bot.bot
WithBot
bot
β€”β€”
eq_of_forall_coe_le_iff πŸ“–β€”WithBot
Preorder.toLE
instPreorder
PartialOrder.toPreorder
some
β€”β€”le_antisymm
forall_coe_le_iff_le
eq_of_forall_le_coe_iff πŸ“–β€”WithBot
Preorder.toLE
instPreorder
PartialOrder.toPreorder
some
β€”β€”le_antisymm
forall_le_coe_iff_le
eq_top_iff_forall_ge πŸ“–mathematicalβ€”Top.top
WithBot
WithTop
instTop
WithTop.top
Preorder.toLE
instPreorder
WithTop.instPreorder
PartialOrder.toPreorder
some
WithTop.some
β€”β€”
eq_unbot_iff πŸ“–mathematicalβ€”unbot
some
β€”β€”
exists πŸ“–mathematicalβ€”Bot.bot
WithBot
bot
some
β€”β€”
exists_coe_le πŸ“–mathematicalβ€”WithBot
Preorder.toLE
instPreorder
some
β€”β€”
exists_coe_lt πŸ“–mathematicalβ€”WithBot
Preorder.toLT
instPreorder
some
β€”β€”
exists_ne_bot πŸ“–mathematicalβ€”someβ€”β€”
forall πŸ“–mathematicalβ€”Bot.bot
WithBot
bot
some
β€”β€”
forall_coe_le πŸ“–mathematicalβ€”someβ€”instIsEmptyFalse
forall_coe_le_iff_le πŸ“–mathematicalβ€”WithBot
Preorder.toLE
instPreorder
some
β€”not_isBot
le_rfl
LE.le.trans'
forall_coe_lt πŸ“–mathematicalβ€”someβ€”instIsEmptyFalse
forall_le_coe_iff_le πŸ“–mathematicalβ€”WithBot
Preorder.toLE
instPreorder
some
β€”le_rfl
LE.le.trans
forall_ne_bot πŸ“–mathematicalβ€”someβ€”β€”
ge_of_forall_gt_iff_ge πŸ“–mathematicalβ€”WithBot
Preorder.toLE
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
some
β€”instIsEmptyFalse
instWellFoundedGT πŸ“–mathematicalβ€”WellFoundedGT
WithBot
instLT
β€”instIsEmptyFalse
wellFounded_gt
instWellFoundedLT πŸ“–mathematicalβ€”WellFoundedLT
WithBot
instLT
β€”instIsEmptyFalse
coe_lt_coe
wellFounded_lt
le_bot_iff πŸ“–mathematicalβ€”WithBot
instLE
Bot.bot
bot
β€”β€”
le_coe_iff πŸ“–mathematicalβ€”WithBot
instLE
some
β€”β€”
le_coe_unbotD πŸ“–mathematicalβ€”WithBot
Preorder.toLE
instPreorder
some
unbotD
β€”β€”
le_def πŸ“–mathematicalβ€”WithBot
instLE
Bot.bot
bot
some
β€”le_def_aux
le_def' πŸ“–mathematicalβ€”WithBot
instLE
Bot.bot
bot
some
β€”β€”
le_def_aux πŸ“–mathematicalβ€”LE
Bot.bot
WithBot
bot
some
β€”β€”
le_iff_forall πŸ“–mathematicalβ€”WithBot
instLE
some
β€”instIsEmptyFalse
le_ofDual_iff πŸ“–mathematicalβ€”WithTop
WithTop.instLE
DFunLike.coe
Equiv
WithBot
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLE
OrderDual.instLE
WithTop.toDual
β€”β€”
le_of_forall_lt_iff_le πŸ“–mathematicalβ€”WithBot
Preorder.toLE
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
some
β€”β€”
le_toDual_iff πŸ“–mathematicalβ€”WithTop
OrderDual
WithTop.instLE
OrderDual.instLE
DFunLike.coe
Equiv
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLE
WithTop.ofDual
β€”β€”
le_unbotA πŸ“–mathematicalWithBot
Preorder.toLE
instPreorder
PartialOrder.toPreorder
some
unbotAβ€”le_unbotD
le_unbotA_iff πŸ“–mathematicalβ€”unbotA
WithBot
instLE
some
β€”le_unbotD_iff
le_unbotD πŸ“–mathematicalWithBot
Preorder.toLE
instPreorder
PartialOrder.toPreorder
some
unbotDβ€”le_unbotD_iff
ne_bot_of_le_ne_bot
le_unbotD_iff πŸ“–mathematicalβ€”unbotD
WithBot
instLE
some
β€”CanLift.prf
canLift
le_unbot_iff πŸ“–mathematicalβ€”unbot
WithBot
instLE
some
β€”CanLift.prf
canLift
lt_coe_bot πŸ“–mathematicalβ€”WithBot
Preorder.toLT
instPreorder
some
Bot.bot
OrderBot.toBot
Preorder.toLE
bot
β€”β€”
lt_coe_iff πŸ“–mathematicalβ€”WithBot
instLT
some
β€”β€”
lt_def πŸ“–mathematicalβ€”WithBot
instLT
Bot.bot
bot
some
β€”lt_def_aux
lt_def' πŸ“–mathematicalβ€”WithBot
instLT
some
Bot.bot
bot
β€”β€”
lt_def_aux πŸ“–mathematicalβ€”LT
Bot.bot
WithBot
bot
some
β€”β€”
lt_iff_exists πŸ“–mathematicalβ€”WithBot
instLT
some
β€”instIsEmptyFalse
lt_iff_exists_coe πŸ“–mathematicalβ€”WithBot
instLT
some
β€”β€”
lt_iff_exists_coe_btwn πŸ“–mathematicalβ€”WithBot
Preorder.toLT
instPreorder
some
β€”exists_between
denselyOrdered
lt_iff_exists_coe
lt_trans
lt_iff_exists_coe_btwn' πŸ“–mathematicalβ€”WithBot
Preorder.toLT
instPreorder
some
β€”lt_iff_exists_coe_btwn
lt_ofDual_iff πŸ“–mathematicalβ€”WithTop
WithTop.instLT
DFunLike.coe
Equiv
WithBot
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLT
OrderDual.instLT
WithTop.toDual
β€”β€”
lt_toDual_iff πŸ“–mathematicalβ€”WithTop
OrderDual
WithTop.instLT
OrderDual.instLT
DFunLike.coe
Equiv
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLT
WithTop.ofDual
β€”β€”
lt_unbotA_iff πŸ“–mathematicalβ€”unbotA
WithBot
instLT
some
β€”lt_unbotD_iff
lt_unbotD_iff πŸ“–mathematicalβ€”unbotD
WithBot
instLT
some
β€”CanLift.prf
canLift
lt_unbot_iff πŸ“–mathematicalβ€”unbot
WithBot
instLT
some
β€”CanLift.prf
canLift
map_bot πŸ“–mathematicalβ€”map
Bot.bot
WithBot
bot
β€”β€”
map_coe πŸ“–mathematicalβ€”map
some
β€”β€”
map_comm πŸ“–mathematicalβ€”map
some
β€”Option.map_comm
map_comp_map πŸ“–mathematicalβ€”WithBot
map
β€”β€”
map_eq_bot_iff πŸ“–mathematicalβ€”map
Bot.bot
WithBot
bot
β€”β€”
map_eq_some_iff πŸ“–mathematicalβ€”map
some
β€”β€”
map_id πŸ“–mathematicalβ€”map
WithBot
β€”β€”
map_injective πŸ“–mathematicalβ€”WithBot
map
β€”β€”
map_le_iff πŸ“–mathematicalPreorder.toLEWithBot
instPreorder
map
β€”β€”
map_map πŸ“–mathematicalβ€”mapβ€”β€”
map_ofDual πŸ“–mathematicalβ€”map
DFunLike.coe
Equiv
WithBot
OrderDual
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
OrderDual.ofDual
β€”β€”
map_toDual πŸ“–mathematicalβ€”map
OrderDual
DFunLike.coe
Equiv
WithBot
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
toDual
OrderDual.toDual
β€”β€”
mapβ‚‚_bot_left πŸ“–mathematicalβ€”mapβ‚‚
Bot.bot
WithBot
bot
β€”β€”
mapβ‚‚_bot_right πŸ“–mathematicalβ€”mapβ‚‚
Bot.bot
WithBot
bot
β€”β€”
mapβ‚‚_coe_coe πŸ“–mathematicalβ€”mapβ‚‚
some
β€”β€”
mapβ‚‚_coe_left πŸ“–mathematicalβ€”mapβ‚‚
some
map
β€”β€”
mapβ‚‚_coe_right πŸ“–mathematicalβ€”mapβ‚‚
some
map
β€”β€”
mapβ‚‚_eq_bot_iff πŸ“–mathematicalβ€”mapβ‚‚
Bot.bot
WithBot
bot
β€”Option.mapβ‚‚_eq_none_iff
monotone_iff πŸ“–mathematicalβ€”Monotone
WithBot
instPreorder
some
Preorder.toLE
Bot.bot
bot
β€”Monotone.comp
coe_mono
bot_le
forall
le_rfl
not_coe_le_bot
coe_le_coe
monotone_map_iff πŸ“–mathematicalβ€”Monotone
WithBot
instPreorder
map
β€”monotone_iff
ne_bot_iff_exists πŸ“–mathematicalβ€”someβ€”β€”
noMaxOrder πŸ“–mathematicalβ€”NoMaxOrder
WithBot
instLT
β€”NoMaxOrder.exists_gt
noTopOrder πŸ“–mathematicalβ€”NoTopOrder
WithBot
instLE
β€”NoTopOrder.exists_not_le
none_eq_bot πŸ“–mathematicalβ€”Bot.bot
WithBot
bot
β€”β€”
nontrivial πŸ“–mathematicalβ€”Nontrivial
WithBot
β€”Option.nontrivial
not_coe_le_bot πŸ“–mathematicalβ€”WithBot
instLE
some
Bot.bot
bot
β€”β€”
not_lt_bot πŸ“–mathematicalβ€”WithBot
instLT
Bot.bot
bot
β€”β€”
ofDual_apply_bot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
OrderDual
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
Bot.bot
bot
Top.top
WithTop.top
β€”ofDual_bot
ofDual_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
OrderDual
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
some
WithTop.some
OrderDual.ofDual
β€”β€”
ofDual_bot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
OrderDual
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
Bot.bot
bot
Top.top
WithTop.top
β€”β€”
ofDual_le_iff πŸ“–mathematicalβ€”WithTop
WithTop.instLE
DFunLike.coe
Equiv
WithBot
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLE
OrderDual.instLE
WithTop.toDual
β€”β€”
ofDual_le_ofDual_iff πŸ“–mathematicalβ€”WithTop
WithTop.instLE
DFunLike.coe
Equiv
WithBot
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLE
OrderDual.instLE
β€”β€”
ofDual_lt_iff πŸ“–mathematicalβ€”WithTop
WithTop.instLT
DFunLike.coe
Equiv
WithBot
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLT
OrderDual.instLT
WithTop.toDual
β€”β€”
ofDual_lt_ofDual_iff πŸ“–mathematicalβ€”WithTop
WithTop.instLT
DFunLike.coe
Equiv
WithBot
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLT
OrderDual.instLT
β€”β€”
ofDual_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
OrderDual
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
map
WithTop.map
OrderDual.ofDual
OrderDual.toDual
β€”β€”
ofDual_symm πŸ“–mathematicalβ€”Equiv.symm
WithBot
OrderDual
WithTop
ofDual
WithTop.toDual
β€”β€”
ofDual_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
WithBot
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
ofDual
WithTop.toDual
β€”β€”
some_eq_coe πŸ“–mathematicalβ€”someβ€”β€”
some_eq_map_iff πŸ“–mathematicalβ€”some
map
β€”β€”
strictAnti_iff πŸ“–mathematicalβ€”StrictAnti
WithBot
instPreorder
some
Preorder.toLT
Bot.bot
bot
β€”strictMono_iff
strictMono_iff πŸ“–mathematicalβ€”StrictMono
WithBot
instPreorder
some
Preorder.toLT
Bot.bot
bot
β€”StrictMono.comp
coe_strictMono
bot_lt_coe
forall
lt_irrefl
not_lt_bot
coe_lt_coe
strictMono_map_iff πŸ“–mathematicalβ€”StrictMono
WithBot
instPreorder
map
β€”strictMono_iff
toDual_apply_bot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
WithTop
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
Bot.bot
bot
Top.top
WithTop.top
β€”toDual_bot
toDual_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
WithTop
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
some
WithTop.some
OrderDual.toDual
β€”β€”
toDual_bot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
WithTop
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
Bot.bot
bot
Top.top
WithTop.top
β€”β€”
toDual_le_iff πŸ“–mathematicalβ€”WithTop
OrderDual
WithTop.instLE
OrderDual.instLE
DFunLike.coe
Equiv
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLE
WithTop.ofDual
β€”β€”
toDual_le_toDual_iff πŸ“–mathematicalβ€”WithTop
OrderDual
WithTop.instLE
OrderDual.instLE
DFunLike.coe
Equiv
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLE
β€”β€”
toDual_lt_iff πŸ“–mathematicalβ€”WithTop
OrderDual
WithTop.instLT
OrderDual.instLT
DFunLike.coe
Equiv
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLT
WithTop.ofDual
β€”β€”
toDual_lt_toDual_iff πŸ“–mathematicalβ€”WithTop
OrderDual
WithTop.instLT
OrderDual.instLT
DFunLike.coe
Equiv
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLT
β€”β€”
toDual_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
WithTop
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
map
WithTop.map
OrderDual.toDual
OrderDual.ofDual
β€”β€”
toDual_symm πŸ“–mathematicalβ€”Equiv.symm
WithBot
WithTop
OrderDual
toDual
WithTop.ofDual
β€”β€”
toDual_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
OrderDual
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toDual
WithTop.ofDual
β€”β€”
top_eq_coe πŸ“–mathematicalβ€”Top.top
WithBot
instTop
some
β€”coe_eq_coe
total_le πŸ“–mathematicalβ€”WithBot
instLE
β€”β€”
unbotA_eq_unbot πŸ“–mathematicalβ€”unbotA
unbot
β€”β€”
unbotA_le_iff πŸ“–mathematicalβ€”unbotA
WithBot
instLE
some
β€”CanLift.prf
canLift
unbotA_lt_iff πŸ“–mathematicalβ€”unbotA
WithBot
instLT
some
β€”CanLift.prf
canLift
unbotA_mono πŸ“–mathematicalWithBot
instLE
unbotAβ€”unbotD_mono
unbotD_bot πŸ“–mathematicalβ€”unbotD
Bot.bot
WithBot
bot
β€”β€”
unbotD_coe πŸ“–mathematicalβ€”unbotD
some
β€”β€”
unbotD_eq_iff πŸ“–mathematicalβ€”unbotD
some
Bot.bot
WithBot
bot
β€”β€”
unbotD_eq_self_iff πŸ“–mathematicalβ€”unbotD
some
Bot.bot
WithBot
bot
β€”β€”
unbotD_eq_unbotD_iff πŸ“–mathematicalβ€”unbotD
some
Bot.bot
WithBot
bot
β€”β€”
unbotD_le_iff πŸ“–mathematicalβ€”unbotD
WithBot
instLE
some
β€”β€”
unbotD_lt_iff πŸ“–mathematicalβ€”unbotD
WithBot
instLT
some
β€”β€”
unbotD_mono πŸ“–mathematicalWithBot
instLE
unbotDβ€”CanLift.prf
canLift
unbot_coe πŸ“–mathematicalWithBot
some
Bot.bot
bot
coe_ne_bot
unbotβ€”β€”
unbot_eq_iff πŸ“–mathematicalβ€”unbot
some
β€”β€”
unbot_le_iff πŸ“–mathematicalβ€”unbot
WithBot
instLE
some
β€”CanLift.prf
canLift
unbot_le_unbot πŸ“–mathematicalβ€”unbot
WithBot
instLE
β€”unbot_le_unbot_iff
unbot_le_unbot_iff πŸ“–mathematicalβ€”unbot
WithBot
instLE
β€”coe_unbot
unbot_lt_iff πŸ“–mathematicalβ€”unbot
WithBot
instLT
some
β€”CanLift.prf
canLift
unbot_lt_unbot πŸ“–mathematicalβ€”unbot
WithBot
instLT
β€”unbot_lt_unbot_iff
unbot_lt_unbot_iff πŸ“–mathematicalβ€”unbot
WithBot
instLT
β€”coe_unbot
unbot_mono πŸ“–mathematicalWithBot
instLE
unbotβ€”unbot_le_unbot_iff

WithBot.IsWellOrder

Theorems

NameKindAssumesProvesValidatesDepends On
gt πŸ“–mathematicalβ€”IsWellOrder
WithBot
Preorder.toLT
WithBot.instPreorder
β€”WithBot.trichotomous.gt
IsWellOrder.toTrichotomous
instIsTransGt
WithBot.instWellFoundedGT
IsWellOrder.toIsWellFounded
lt πŸ“–mathematicalβ€”IsWellOrder
WithBot
Preorder.toLT
WithBot.instPreorder
β€”WithBot.trichotomous.lt
IsWellOrder.toTrichotomous
instIsTransLt
WithBot.instWellFoundedLT
IsWellOrder.toIsWellFounded

WithBot.trichotomous

Theorems

NameKindAssumesProvesValidatesDepends On
gt πŸ“–mathematicalβ€”WithBot
Preorder.toLT
WithBot.instPreorder
β€”Std.Trichotomous.swap
lt
lt πŸ“–mathematicalβ€”WithBot
Preorder.toLT
WithBot.instPreorder
β€”β€”

WithTop

Definitions

NameCategoryTheorems
decidableEq πŸ“–CompOp
6 mathmath: mul_def, top_mul', Finset.min_mem_image_coe, MeasureTheory.stoppedValue_stoppedProcess, mul_top', Finset.min_mem_insert_top_image_coe
decidableLE πŸ“–CompOpβ€”
decidableLT πŸ“–CompOp
1 mathmath: HahnSeries.SummableFamily.powers_toFun
distribLattice πŸ“–CompOpβ€”
instBot πŸ“–CompOp
5 mathmath: coe_eq_bot, coe_bot, Finset.min_eq_bot, bot_eq_coe, eq_bot_iff_forall_le
instBoundedOrder πŸ“–CompOp
6 mathmath: LatticeHom.withTopWithBot_apply, LatticeHom.coe_withTopWithBot, LatticeHom.withTopWithBot_id, LatticeHom.withTopWithBot_comp, LatticeHom.withTopWithBot'_toFun, LatticeHom.withTopWithBot_toFun
instLE πŸ“–CompOp
60 mathmath: WithBot.coe_toDualTopEquiv_eq, WithBot.add_le_add_iff_right', toDualBotEquiv_coe, WithBotTop.coe_le_coe, le_toDual_iff, le_def, WithBot.ofDual_le_iff, untop_le_untop_iff, addLECancellable_coe, instOrderedSub, le_iff_forall, coe_le_zero, orderIsoSumLexPUnit_toLex, orderIsoSumLexPUnit_symm_inl, WithBot.le_toDual_iff, toDualBotEquiv_symm_top, existsAddOfLE, orderIsoSumLexPUnit_top, zeroLEOneClass, WithBot.toDualTopEquiv_coe, coe_le_iff, not_top_le_coe, WithBot.toDual_le_iff, ofDual_le_ofDual_iff, noBotOrder, WithBot.toDualTopEquiv_symm_bot, le_coe_iff, untop_le_iff, WithBot.toDualTopEquiv_symm_coe, coe_le_one, toDual_le_toDual_iff, le_ofDual_iff, WithBot.le_ofDual_iff, le_untop_iff, toDualBotEquiv_symm_coe, ofDual_le_iff, WithBot.toDualTopEquiv_bot, untopA_le_iff, WithBot.toDual_le_toDual_iff, coe_nonneg, le_untopD_iff, total_le, addRightMono, orderIsoSumLexPUnit_symm_inr, top_le_iff, one_le_coe, coe_le_coe, le_def', IsMin.withTop, addLeftMono, toDual_le_iff, le_coe, addLECancellable_of_ne_top, le_untopA_iff, add_le_add_iff_left, WithBot.ofDual_le_ofDual_iff, coe_toDualBotEquiv, toDualBotEquiv_top, untopD_le_iff, add_le_add_iff_right
instLT πŸ“–CompOp
47 mathmath: lt_def, instWellFoundedGT, WithBot.lt_ofDual_iff, lt_untopD_iff, denselyOrdered, untopA_lt_iff, lt_toDual_iff, coe_lt_top, lt_def', not_top_lt, one_lt_top, one_lt_coe, add_lt_top, ofDual_lt_ofDual_iff, toDual_lt_iff, lt_untop_iff, addLeftReflectLT, addRightReflectLT, WithBot.ofDual_lt_iff, untopD_lt_iff, WithBot.toDual_lt_toDual_iff, WithBot.ofDual_lt_ofDual_iff, toDual_lt_toDual_iff, coe_lt_one, denselyOrdered_iff, coe_lt_coe, lt_iff_exists, WithBot.lt_toDual_iff, natCast_lt_top, untop_lt_iff, lt_untopA_iff, add_lt_add_iff_right, coe_lt_iff, instWellFoundedLT, WithBot.toDual_lt_iff, noMinOrder, ofDual_lt_iff, untop_lt_untop_iff, top_pos, coe_pos, lt_ofDual_iff, WithBotTop.coe_lt_coe, sum_lt_top, add_lt_add_iff_left, lt_top_iff_ne_top, coe_lt_zero, lt_iff_exists_coe
instOrderBot πŸ“–CompOpβ€”
instOrderTop πŸ“–CompOp
10 mathmath: Finset.coe_inf', Finset.min_eq_inf_withTop, untrop_sum, trop_iInf, Finset.coe_inf_of_nonempty, Finset.untrop_sum, Finset.inf_of_mem, untrop_sum_eq_sInf_image, AddMonoidAlgebra.infDegree_withTop_some_comp, trop_sInf_image
instPartialOrder πŸ“–CompOp
2 mathmath: isOrderedAddMonoid, instIsOrderedRing
instPreorder πŸ“–CompOp
221 mathmath: MeasureTheory.IsStoppingTime.measurableSet_inter_le_iff, tendsto_zero_iff_meromorphicOrderAt_pos, pred_eq_pred, HahnSeries.orderTop_single_le, WithBotTop.coe_strictMono, coe_mono, Ico_coe_coe, OrderIso.withTopCongr_apply, OrderIso.withTopCongr_refl, tendsto_cobounded_iff_meromorphicOrderAt_neg, pred_untop, lt_iff_exists_coe_btwn', MeasureTheory.hittingAfter_bot_le_iff, MeasureTheory.IsStoppingTime.measurableSet, MeasureTheory.IsStoppingTime.measurableSet_gt, Field.Emb.Cardinal.directed_filtration, IsWellOrder.gt, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, Ioc_coe_coe, List.minimum_of_length_pos_le_iff, Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, Ico_coe_top, HahnSeries.orderTop_sub_pos, MeromorphicNFAt.meromorphicOrderAt_nonneg_iff_analyticAt, Ici_coe, preimage_coe_Iio_top, MvPowerSeries.min_lexOrder_le, ENat.monotone_map_iff, pow_right_strictMono, MeasureTheory.hittingAfter_mono, eq_top_iff_forall_gt, Ioo_coe_top, IsWellOrder.lt, exists_le_coe, MeasureTheory.IsStoppingTime.measurableSet_ge', MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable, HahnSeries.le_orderTop_of_leadingCoeff_eq, TopologicalSpace.instOrderTopologyWithTop, MeasureTheory.IsStoppingTime.measurableSet_lt_of_isLUB, preimage_coe_Ici, le_minSmoothness, image_coe_Ioc, MeasureTheory.IsStoppingTime.measurableSet_le_stopping_time, ENat.map_natCast_strictMono, IsContDiffImplicitAt.one_le, image_coe_Ioo, WithBot.eq_top_iff_forall_ge, preimage_coe_Iio, preimage_coe_Ioc, FiniteMulArchimedeanClass.withTopOrderIso_apply_coe, Icc_coe_coe, OrderIso.withTopCongr_trans, untopβ‚€_nonneg, meromorphicOrderAt_add, monotone_map_iff, strictMono_map_iff, Ioo_coe_coe, Ioo_coe, MeasureTheory.IsStoppingTime.measurableSet_inter_le_const_iff, Finset.min_le, HahnSeries.zero_lt_orderTop_of_order, MvPowerSeries.le_lexOrder_iff, OrderEmbedding.withTopCoe_apply, HahnSeries.addVal_le_of_coeff_ne_zero, Order.height_coe_withTop, preimage_coe_Ico, MeasureTheory.IsStoppingTime.measurableSet_lt, Monotone.withTop_map, AnalyticAt.meromorphicOrderAt_nonneg, MeasureTheory.IsStoppingTime.measurableSet_lt_of_pred, Iic_coe, image_coe_Ico, MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable', MeasureTheory.IsStoppingTime.measurableSet_le, lt_iff_exists_coe_btwn, coe_covBy_top, tendsto_nhds_iff_meromorphicOrderAt_nonneg, OrderIso.withTopCongr_symm, coe_covBy_coe, HahnSeries.lt_orderTop_single, Padic.AddValuation.map_add, HahnSeries.orderTop_le_of_coeff_ne_zero, Order.krullDim_WithTop, FiniteMulArchimedeanClass.withTopOrderIso_symm_apply, meromorphicNFAt_iff_analyticAt_or, Associates.factors_le, MeasureTheory.IsStoppingTime.measurableSet_ge, eq_top_iff_forall_ge, Field.Emb.Cardinal.equivSucc_coherence, subtypeOrderIso_symm_apply, iSup_coe_lt_top, image_coe_Iic, HahnSeries.orderTop_lt_top, ge_of_forall_gt_iff_ge, Order.coheight_coe_withTop, ENat.one_le_iff_ne_zero_withTop, MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable, pred_mono, HahnSeries.unit_aux, orderPred_coe, Iio_coe, MeasureTheory.hittingAfter_apply_anti, Associates.factors_mono, OrderEmbedding.withTopMap_apply, iInf_coe_lt_top, MeasureTheory.measurableSet_preimage_stoppedValue_inter, image_coe_Ici, pred_strictMono, ENat.LEInfty.out, image_coe_Ioi, tangentBundleCore.isContMDiff, orderPred_top, pow_lt_top_iff, coe_wcovBy_top, MeasureTheory.stoppedProcess_eq'', MeasureTheory.IsStoppingTime.measurableSet_le', TangentBundle.contMDiffVectorBundle, preimage_coe_Iic, MeasureTheory.IsStoppingTime.measurableSet_lt_le, image_coe_Iio, Field.Emb.Cardinal.filtration_apply, MeasureTheory.condExp_min_stopping_time_ae_eq_restrict_le_const, HahnSeries.orderTop_nsmul_le_orderTop_pow, HahnSeries.archimedeanClassOrderIsoWithTop_apply, Ioi_coe, Ioc_coe, forall_coe_le_iff_le, MeasureTheory.stoppedProcess_eq_of_mem_finset, isGLB_sInf, MeasureTheory.IsStoppingTime.measurableSet_inter_le, preimage_coe_Ioo, map_le_iff, Ico_coe, strictAnti_iff, HahnSeries.orderTop_add_le_mul, forall_le_coe_iff_le, MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range, WithBotTop.coe_monotone, hahnEmbedding_isOrderedModule_rat, HahnModule.orderTop_vAdd_le_orderTop_smul, Finset.le_min_iff, coeOrderHom_apply, HahnSeries.orderTop_le_orderTop_smul, HahnSeries.orderTop_lt_iff_exists, canonicallyOrderedAdd, FiniteArchimedeanClass.withTopOrderIso_symm_apply, MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range', coe_strictMono, trichotomous.lt, List.minimum_anti, HahnSeries.archimedeanClassMk_le_archimedeanClassMk_iff, MeasureTheory.IsStoppingTime.measurableSet_stopping_time_le_min, preimage_coe_Ioi, isLUB_sSup, exists_lt_coe, ENat.map_natCast_nonneg, Icc_coe, MeasureTheory.IsStoppingTime.measurableSet_gt', HahnSeries.SummableFamily.powers_toFun, coe_untopD_le, HahnSeries.orderTop_self_sub_one_pos_iff, HahnSeries.min_orderTop_le_orderTop_sub, MeasureTheory.hittingAfter_le_iff, instIsEmptyPredOrderOfNonempty, denselyOrdered_set_iff_subsingleton, subtypeOrderIso_apply_coe, ENat.strictMono_map_iff, coe_wcovBy_coe, monotone_iff, List.minimum_le_of_mem', MeasureTheory.hittingAfter_apply_mono, MeasureTheory.le_hittingAfter, succ_coe_of_isMax, le_of_forall_lt_iff_le, Ioc_coe_top, HahnSeries.zero_lt_orderTop_iff, tendsto_nhds_top_iff, MeasureTheory.hittingAfter_le_of_mem, coe_top_lt, Finset.min_mono, succ_coe, MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable_range, preimage_coe_Ioo_top, HahnSeries.zero_le_orderTop_iff, MvPowerSeries.lexOrder_le_of_coeff_ne_zero, OrderHom.withTopMap_coe, strictMono_iff, HahnSeries.orderTop_smul_not_lt, trichotomous.gt, Icc_coe_top, OrderIso.withTopCongr_symm_apply, image_coe_Icc, untopβ‚€_le_untopβ‚€_iff, List.minimum_le_coe_iff, preimage_coe_Icc, Associates.prod_le, MvPowerSeries.le_lexOrder_mul, HahnSeries.mem_orderTopSubOnePos_iff, minSmoothness_monotone, MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable', MeasureTheory.hittingAfter_anti, MeasureTheory.IsStoppingTime.measurableSet_stopping_time_le, preimage_coe_Ico_top, HahnSeries.min_orderTop_le_orderTop_add, addLECancellable_iff_ne_top, MeasureTheory.hittingAfter_lt_iff, MeasureTheory.condExp_min_stopping_time_ae_eq_restrict_le, succ_coe_of_not_isMax, List.not_lt_minimum_of_mem', FiniteArchimedeanClass.withTopOrderIso_apply_coe, MeasureTheory.IsStoppingTime.measurableSet_lt', range_coe, le_of_untopβ‚€_le_untopβ‚€, HahnSeries.le_orderTop_iff_forall, isLUB_sSup', MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable_range', hahnEmbedding_isOrderedAddMonoid, MvPowerSeries.lexOrder_mul_ge, StrictMono.withTop_map, eq_bot_iff_forall_le, hahnEmbedding_isOrderedModule
instUniqueOfIsEmpty πŸ“–CompOpβ€”
lattice πŸ“–CompOp
12 mathmath: LatticeHom.withTopWithBot_apply, LatticeHom.coe_withTopWithBot, LatticeHom.withTopWithBot_id, LatticeHom.withTopWithBot_comp, LatticeHom.withTopWithBot'_toFun, LatticeHom.withTop_apply, LatticeHom.withTop_toFun, LatticeHom.withTop'_toFun, LatticeHom.coe_withTop, LatticeHom.withTopWithBot_toFun, LatticeHom.withTop_comp, LatticeHom.withTop_id
linearOrder πŸ“–CompOp
7 mathmath: untrop_sum, Tropical.add_eq_zero_iff, trop_iInf, Finset.untrop_sum, untrop_sum_eq_sInf_image, trop_sInf_image, List.trop_minimum
map πŸ“–CompOp
59 mathmath: WithBot.ofDual_map, map_ofDual, LatticeHom.withTopWithBot_apply, OneHom.withTopMap_apply, OrderIso.withTopCongr_apply, one_eq_map_iff, LatticeHom.coe_withTopWithBot, mapβ‚‚_coe_right, AddHom.withTopMap_apply, map_eq_top_iff, ZeroHom.withTopMap_apply, map_id, map_ofNat, monotone_map_iff, strictMono_map_iff, map_sub, LatticeHom.withTop_apply, AddMonoidHom.withTopMap_apply, WithBot.toDual_map, Monotone.withTop_map, LatticeHom.withTop_toFun, map_zero, map_eq_natCast_iff, ENat.toENNRealOrderEmbedding_apply, mapβ‚‚_coe_left, Equiv.withTopCongr_apply, Finset.map_toDual_min, map_injective, LatticeHom.coe_withTop, natCast_eq_map_iff, SupHom.withTop_toFun, OrderEmbedding.withTopMap_apply, InfHom.withTop_toFun, LatticeHom.withTopWithBot_toFun, map_comp_map, ofDual_map, map_toDual, comp_map, map_eq_some_iff, map_eq_one_iff, map_eq_ofNat_iff, map_le_iff, ofNat_eq_map_iff, map_eq_zero_iff, MonoidWithZeroHom.withTopMap_apply, zero_eq_map_iff, map_comm, some_eq_map_iff, map_top, map_natCast, toDual_map, Finset.map_ofDual_min, OrderHom.withTopMap_coe, map_map, map_coe, HahnSeries.orderTop_embDomain, map_one, StrictMono.withTop_map, map_add
mapβ‚‚ πŸ“–CompOp
7 mathmath: mul_def, mapβ‚‚_coe_right, mapβ‚‚_coe_left, mapβ‚‚_top_left, mapβ‚‚_top_right, mapβ‚‚_eq_top_iff, mapβ‚‚_coe_coe
ofDual πŸ“–CompOp
20 mathmath: map_ofDual, ofDual_symm, ofDual_apply_top, WithBot.le_toDual_iff, ofDual_lt_ofDual_iff, ofDual_apply_coe, WithBot.toDual_le_iff, ofDual_le_ofDual_iff, ofDual_map, WithBot.lt_toDual_iff, le_ofDual_iff, ofDual_le_iff, WithBot.toDual_lt_iff, ofDual_lt_iff, ofDual_symm_apply, WithBot.toDual_symm_apply, WithBot.toDual_symm, ofDual_top, lt_ofDual_iff, coe_toDualBotEquiv
semilatticeInf πŸ“–CompOp
47 mathmath: MeasureTheory.IsStoppingTime.measurableSet_inter_le_iff, Finset.coe_inf', MeasureTheory.stoppedProcess_stoppedProcess, Finset.min_eq_inf_withTop, meromorphicOrderAt_add_of_ne, MvPowerSeries.min_lexOrder_le, Finset.min_union, untopβ‚€_min, MeasureTheory.IsStoppingTime.min, meromorphicOrderAt_add, MeasureTheory.IsStoppingTime.measurableSet_inter_le_const_iff, MeasureTheory.stoppedProcess_eq_stoppedValue_apply, List.minimum_append, MeasureTheory.IsStoppingTime.measurableSet_eq_stopping_time_min, Padic.AddValuation.map_add, MeasureTheory.stoppedValue_stoppedProcess_apply, MeasureTheory.Martingale.stoppedValue_min_ae_eq_condExp, List.minimum_cons, MeasureTheory.stoppedValue_stoppedProcess, InfHom.withTop_toFun, MeasureTheory.IsStoppingTime.measurableSpace_min, MeasureTheory.IsStoppingTime.measurableSet_min_iff, InfHom.withTop'_toFun, Finset.min_pair, MeasureTheory.condExp_min_stopping_time_ae_eq_restrict_le_const, MeasureTheory.IsStoppingTime.measurableSpace_min_const, Finset.coe_inf_of_nonempty, MeasureTheory.IsStoppingTime.measurableSet_inter_le, MeasureTheory.IsStoppingTime.min_const, Finset.inf_of_mem, MeasureTheory.progMeasurable_min_stopping_time, InfHom.withTop_id, MeasureTheory.stoppedProcess_stoppedProcess', MeasureTheory.IsStoppingTime.measurableSet_stopping_time_le_min, Finset.min_insert, HahnSeries.min_orderTop_le_orderTop_sub, MeasureTheory.stoppedValue_stoppedProcess_ae_eq, List.minimum_concat, coe_min, MeasureTheory.IsStoppingTime.measurableSet_min_const_iff, coe_inf, AddMonoidAlgebra.infDegree_withTop_some_comp, Associates.FactorSet.sup_add_inf_eq_add, HahnSeries.min_orderTop_le_orderTop_add, MeasureTheory.condExp_min_stopping_time_ae_eq_restrict_le, InfHom.withTop_comp, MeasureTheory.stoppedProcess_eq_stoppedValue
semilatticeSup πŸ“–CompOp
10 mathmath: coe_max, coe_sup, SupHom.withTop'_toFun, untopβ‚€_max, SupHom.withTop_toFun, MeasureTheory.IsStoppingTime.max, SupHom.withTop_id, Associates.FactorSet.sup_add_inf_eq_add, MeasureTheory.IsStoppingTime.max_const, SupHom.withTop_comp
toDual πŸ“–CompOp
19 mathmath: WithBot.lt_ofDual_iff, toDual_top, lt_toDual_iff, le_toDual_iff, WithBot.ofDual_le_iff, toDual_lt_iff, toDual_apply_top, WithBot.ofDual_lt_iff, toDual_lt_toDual_iff, WithBot.ofDual_symm_apply, toDual_symm_apply, map_toDual, toDual_symm, toDual_le_toDual_iff, WithBot.le_ofDual_iff, WithBot.ofDual_symm, toDual_map, toDual_le_iff, toDual_apply_coe
untop πŸ“–CompOp
22 mathmath: HahnSeries.untop_orderTop_of_ne_zero, pred_untop, untop_eq_iff, untop_le_untop_iff, untop_coe, tendsto_untop, coe_untop, untop_zero, HahnSeries.coeff_untop_eq_leadingCoeff, untopA_eq_untop, lt_untop_iff, HahnSeries.leadingCoeff_of_ne, untop_le_iff, untop_lt_iff, le_untop_iff, eq_untop_iff, untop_mono, untop_lt_untop_iff, untop_one, Equiv.withTopSubtypeNe_apply, continuous_untop, HahnSeries.leadingCoeff_of_ne_zero
untopA πŸ“–CompOp
19 mathmath: untopA_lt_iff, MeasureTheory.hittingAfter_mem_set, MeasureTheory.stoppedProcess_eq_of_ge, untopA_eq_untop, MeasureTheory.isStoppingTime_hittingBtwn_isStoppingTime, measurable_untopA, tendsto_untopA, MeasureTheory.progMeasurable_min_stopping_time, untopA_mono, MeasureTheory.stoppedValue_sub_eq_sum, MeasureTheory.hittingAfter_mem_set_of_ne_top, lt_untopA_iff, untopA_le_iff, MeasureTheory.isStoppingTime_hitting_isStoppingTime, untopA_le, continuousOn_untopA, le_untopA_iff, MeasureTheory.Adapted.isStoppingTime_hittingBtwn_isStoppingTime, Measurable.untopA
untopD πŸ“–CompOp
22 mathmath: lt_untopD_iff, continuousOn_untopD, untopD_coe_enat, untopD_top, untopD_zero_mul, untopD_mono, untopD_zero, List.getD_min?_eq_untopD_minimum, untopD_lt_iff, untopD_eq_iff, untopD_le, tendsto_untopD, coe_untopD_le, le_untopD_iff, untopD_one, untopD_eq_untopD_iff, measurable_untopD, Measurable.untopD, untopD_add, untopD_coe, untopD_le_iff, untopD_eq_self_iff

Theorems

NameKindAssumesProvesValidatesDepends On
bot_eq_coe πŸ“–mathematicalβ€”Bot.bot
WithTop
instBot
some
β€”coe_eq_coe
canLift πŸ“–mathematicalβ€”CanLift
WithTop
some
Top.top
top
β€”coe_untop
coe_bot πŸ“–mathematicalβ€”some
Bot.bot
WithTop
instBot
β€”β€”
coe_eq_bot πŸ“–mathematicalβ€”some
Bot.bot
WithTop
instBot
β€”coe_eq_coe
coe_eq_coe πŸ“–mathematicalβ€”someβ€”β€”
coe_inf πŸ“–mathematicalβ€”some
SemilatticeInf.toMin
WithTop
semilatticeInf
β€”β€”
coe_inj πŸ“–mathematicalβ€”someβ€”β€”
coe_injective πŸ“–mathematicalβ€”WithTop
some
β€”Option.some_injective
coe_le_coe πŸ“–mathematicalβ€”WithTop
instLE
some
β€”le_def'
coe_ne_top
coe_le_iff πŸ“–mathematicalβ€”WithTop
instLE
some
β€”le_iff_forall
coe_lt_coe πŸ“–mathematicalβ€”WithTop
instLT
some
β€”lt_def'
coe_ne_top
coe_lt_iff πŸ“–mathematicalβ€”WithTop
instLT
some
β€”lt_iff_exists
coe_lt_top πŸ“–mathematicalβ€”WithTop
instLT
some
Top.top
top
β€”lt_def'
top_ne_coe
coe_max πŸ“–mathematicalβ€”some
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
WithTop
semilatticeSup
β€”β€”
coe_min πŸ“–mathematicalβ€”some
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
WithTop
semilatticeInf
β€”β€”
coe_mono πŸ“–mathematicalβ€”Monotone
WithTop
instPreorder
some
β€”coe_le_coe
coe_ne_top πŸ“–β€”β€”β€”β€”β€”
coe_strictMono πŸ“–mathematicalβ€”StrictMono
WithTop
instPreorder
some
β€”coe_lt_coe
coe_sup πŸ“–mathematicalβ€”some
SemilatticeSup.toMax
WithTop
semilatticeSup
β€”β€”
coe_top_lt πŸ“–mathematicalβ€”WithTop
Preorder.toLT
instPreorder
some
Top.top
OrderTop.toTop
Preorder.toLE
top
β€”coe_lt_top
coe_lt_coe
not_top_lt
coe_ne_top
coe_untop πŸ“–mathematicalβ€”some
untop
β€”β€”
coe_untopD_le πŸ“–mathematicalβ€”WithTop
Preorder.toLE
instPreorder
some
untopD
β€”le_top
le_refl
comp_map πŸ“–mathematicalβ€”mapβ€”map_map
denselyOrdered πŸ“–mathematicalβ€”DenselyOrdered
WithTop
instLT
β€”denselyOrdered_iff
denselyOrdered_iff πŸ“–mathematicalβ€”DenselyOrdered
WithTop
instLT
β€”exists_between
coe_lt_coe
DenselyOrdered.dense
eq_bot_iff_forall_le πŸ“–mathematicalβ€”Bot.bot
WithTop
WithBot
instBot
WithBot.bot
Preorder.toLE
instPreorder
WithBot.instPreorder
PartialOrder.toPreorder
some
WithBot.some
β€”bot_le
top_le_iff
coe_ne_top
coe_eq_bot
WithBot.eq_bot_iff_forall_le
coe_le_coe
eq_of_forall_coe_le_iff πŸ“–β€”WithTop
Preorder.toLE
instPreorder
PartialOrder.toPreorder
some
β€”β€”ge_antisymm
forall_coe_le_iff_le
eq_of_forall_le_coe_iff πŸ“–β€”WithTop
Preorder.toLE
instPreorder
PartialOrder.toPreorder
some
β€”β€”ge_antisymm
forall_le_coe_iff_le
eq_top_iff_forall_ge πŸ“–mathematicalβ€”Top.top
WithTop
top
Preorder.toLE
instPreorder
some
β€”le_top
eq_top_iff_forall_ne
not_isTop
coe_le_coe
eq_top_iff_forall_gt πŸ“–mathematicalβ€”Top.top
WithTop
top
Preorder.toLT
instPreorder
some
β€”coe_lt_top
coe_ne_top
coe_lt_coe
lt_irrefl
eq_top_iff_forall_ne πŸ“–mathematicalβ€”Top.top
WithTop
top
β€”β€”
eq_untop_iff πŸ“–mathematicalβ€”untop
some
β€”coe_ne_top
exists πŸ“–mathematicalβ€”Top.top
WithTop
top
some
β€”β€”
exists_le_coe πŸ“–mathematicalβ€”WithTop
Preorder.toLE
instPreorder
some
β€”exists
top_le_iff
coe_ne_top
coe_le_coe
exists_lt_coe πŸ“–mathematicalβ€”WithTop
Preorder.toLT
instPreorder
some
β€”exists
not_top_lt
coe_lt_coe
exists_ne_top πŸ“–mathematicalβ€”someβ€”ne_top_iff_exists
exists_exists_eq_and
forall πŸ“–mathematicalβ€”Top.top
WithTop
top
some
β€”β€”
forall_coe_le_iff_le πŸ“–mathematicalβ€”WithTop
Preorder.toLE
instPreorder
some
β€”le_top
top_le_iff
eq_top_iff_forall_ge
le_rfl
LE.le.trans'
forall_le_coe πŸ“–mathematicalβ€”someβ€”forall
top_le_iff
coe_ne_top
IsEmpty.forall_iff
instIsEmptyFalse
coe_le_coe
forall_le_coe_iff_le πŸ“–mathematicalβ€”WithTop
Preorder.toLE
instPreorder
some
β€”top_le_iff
eq_top_iff_forall_ge
coe_le_coe
le_top
not_isTop
le_rfl
LE.le.trans
forall_lt_coe πŸ“–mathematicalβ€”someβ€”forall
not_top_lt
IsEmpty.forall_iff
instIsEmptyFalse
coe_lt_coe
forall_ne_top πŸ“–mathematicalβ€”someβ€”ne_top_iff_exists
ge_of_forall_gt_iff_ge πŸ“–mathematicalβ€”WithTop
Preorder.toLE
instPreorder
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
some
β€”coe_lt_top
le_top
le_refl
coe_le_coe
top_le_iff
coe_ne_top
not_le
NoMaxOrder.exists_gt
coe_lt_coe
forall_lt_imp_le_iff_le_of_dense
instWellFoundedGT πŸ“–mathematicalβ€”WellFoundedGT
WithTop
instLT
β€”not_top_lt
IsEmpty.forall_iff
instIsEmptyFalse
coe_lt_coe
wellFounded_gt
instWellFoundedLT πŸ“–mathematicalβ€”WellFoundedLT
WithTop
instLT
β€”forall
not_top_lt
IsEmpty.forall_iff
instIsEmptyFalse
coe_lt_coe
wellFounded_lt
coe_lt_top
le_coe πŸ“–mathematicalβ€”WithTop
instLE
some
β€”coe_le_coe
le_coe_iff πŸ“–mathematicalβ€”WithTop
instLE
some
β€”le_iff_forall
le_def πŸ“–mathematicalβ€”WithTop
instLE
Top.top
top
some
β€”β€”
le_def' πŸ“–mathematicalβ€”WithTop
instLE
Top.top
top
some
β€”WithBot.le_def
le_iff_forall πŸ“–mathematicalβ€”WithTop
instLE
some
β€”le_def'
top_ne_coe
IsEmpty.forall_iff
instIsEmptyFalse
coe_ne_top
le_ofDual_iff πŸ“–mathematicalβ€”WithBot
WithBot.instLE
DFunLike.coe
Equiv
WithTop
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLE
OrderDual.instLE
WithBot.toDual
β€”bot_le
le_top
WithBot.le_bot_iff
WithBot.coe_ne_bot
top_le_iff
coe_ne_top
WithBot.coe_le_coe
coe_le_coe
OrderDual.le_toDual
le_of_forall_lt_iff_le πŸ“–mathematicalβ€”WithTop
Preorder.toLE
instPreorder
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
some
β€”not_top_lt
top_le_iff
coe_ne_top
le_refl
coe_le_coe
IsEmpty.forall_iff
instIsEmptyFalse
le_top
coe_lt_coe
not_lt
not_le
NoMaxOrder.exists_gt
forall_gt_imp_ge_iff_le_of_dense
le_toDual_iff πŸ“–mathematicalβ€”WithBot
OrderDual
WithBot.instLE
OrderDual.instLE
DFunLike.coe
Equiv
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLE
WithBot.ofDual
β€”bot_le
le_top
WithBot.le_bot_iff
WithBot.coe_ne_bot
top_le_iff
coe_ne_top
WithBot.coe_le_coe
OrderDual.le_toDual
coe_le_coe
le_untopA_iff πŸ“–mathematicalβ€”untopA
WithTop
instLE
some
β€”CanLift.prf
canLift
coe_le_coe
le_untopD_iff πŸ“–mathematicalβ€”untopD
WithTop
instLE
some
β€”le_top
coe_le_coe
le_untop_iff πŸ“–mathematicalβ€”untop
WithTop
instLE
some
β€”CanLift.prf
canLift
coe_le_coe
lt_def πŸ“–mathematicalβ€”WithTop
instLT
some
Top.top
top
β€”β€”
lt_def' πŸ“–mathematicalβ€”WithTop
instLT
Top.top
top
some
β€”WithBot.lt_def
lt_iff_exists πŸ“–mathematicalβ€”WithTop
instLT
some
β€”lt_def'
top_ne_coe
IsEmpty.forall_iff
instIsEmptyFalse
coe_ne_top
lt_iff_exists_coe πŸ“–mathematicalβ€”WithTop
instLT
some
β€”not_top_lt
top_ne_coe
lt_iff_exists_coe_btwn πŸ“–mathematicalβ€”WithTop
Preorder.toLT
instPreorder
some
β€”lt_iff_exists_coe_btwn'
lt_iff_exists_coe_btwn' πŸ“–mathematicalβ€”WithTop
Preorder.toLT
instPreorder
some
β€”exists_between'
denselyOrdered
lt_iff_exists_coe
gt_trans
lt_ofDual_iff πŸ“–mathematicalβ€”WithBot
WithBot.instLT
DFunLike.coe
Equiv
WithTop
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLT
OrderDual.instLT
WithBot.toDual
β€”WithBot.not_lt_bot
not_top_lt
WithBot.bot_lt_coe
coe_lt_top
WithBot.coe_lt_coe
coe_lt_coe
OrderDual.lt_toDual
lt_toDual_iff πŸ“–mathematicalβ€”WithBot
OrderDual
WithBot.instLT
OrderDual.instLT
DFunLike.coe
Equiv
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLT
WithBot.ofDual
β€”WithBot.not_lt_bot
not_top_lt
WithBot.bot_lt_coe
coe_lt_top
WithBot.coe_lt_coe
OrderDual.lt_toDual
coe_lt_coe
lt_top_iff_ne_top πŸ“–mathematicalβ€”WithTop
instLT
Top.top
top
β€”not_top_lt
coe_lt_top
coe_ne_top
lt_untopA_iff πŸ“–mathematicalβ€”untopA
WithTop
instLT
some
β€”CanLift.prf
canLift
coe_lt_coe
lt_untopD_iff πŸ“–mathematicalβ€”untopD
WithTop
instLT
some
β€”coe_lt_top
coe_lt_coe
lt_untop_iff πŸ“–mathematicalβ€”untop
WithTop
instLT
some
β€”CanLift.prf
canLift
coe_lt_coe
map_coe πŸ“–mathematicalβ€”map
some
β€”β€”
map_comm πŸ“–mathematicalβ€”map
some
β€”Option.map_comm
map_comp_map πŸ“–mathematicalβ€”WithTop
map
β€”β€”
map_eq_some_iff πŸ“–mathematicalβ€”map
some
β€”β€”
map_eq_top_iff πŸ“–mathematicalβ€”map
Top.top
WithTop
top
β€”β€”
map_id πŸ“–mathematicalβ€”map
WithTop
β€”β€”
map_injective πŸ“–mathematicalβ€”WithTop
map
β€”β€”
map_le_iff πŸ“–mathematicalPreorder.toLEWithTop
instPreorder
map
β€”le_refl
le_top
top_le_iff
coe_ne_top
coe_le_coe
map_map πŸ“–mathematicalβ€”mapβ€”β€”
map_ofDual πŸ“–mathematicalβ€”map
DFunLike.coe
Equiv
WithTop
OrderDual
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
OrderDual.ofDual
β€”β€”
map_toDual πŸ“–mathematicalβ€”map
OrderDual
DFunLike.coe
Equiv
WithTop
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
toDual
OrderDual.toDual
β€”β€”
map_top πŸ“–mathematicalβ€”map
Top.top
WithTop
top
β€”β€”
mapβ‚‚_coe_coe πŸ“–mathematicalβ€”mapβ‚‚
some
β€”β€”
mapβ‚‚_coe_left πŸ“–mathematicalβ€”mapβ‚‚
some
map
β€”β€”
mapβ‚‚_coe_right πŸ“–mathematicalβ€”mapβ‚‚
some
map
β€”β€”
mapβ‚‚_eq_top_iff πŸ“–mathematicalβ€”mapβ‚‚
Top.top
WithTop
top
β€”Option.mapβ‚‚_eq_none_iff
mapβ‚‚_top_left πŸ“–mathematicalβ€”mapβ‚‚
Top.top
WithTop
top
β€”β€”
mapβ‚‚_top_right πŸ“–mathematicalβ€”mapβ‚‚
Top.top
WithTop
top
β€”β€”
monotone_iff πŸ“–mathematicalβ€”Monotone
WithTop
instPreorder
some
Preorder.toLE
Top.top
top
β€”Monotone.comp
coe_mono
le_top
forall
le_rfl
not_top_le_coe
coe_le_coe
monotone_map_iff πŸ“–mathematicalβ€”Monotone
WithTop
instPreorder
map
β€”monotone_iff
coe_le_coe
le_top
ne_top_iff_exists πŸ“–mathematicalβ€”someβ€”β€”
noBotOrder πŸ“–mathematicalβ€”NoBotOrder
WithTop
instLE
β€”top_le_iff
coe_ne_top
NoBotOrder.exists_not_ge
coe_le_coe
noMinOrder πŸ“–mathematicalβ€”NoMinOrder
WithTop
instLT
β€”coe_lt_top
NoMinOrder.exists_lt
coe_lt_coe
none_eq_top πŸ“–mathematicalβ€”Top.top
WithTop
top
β€”β€”
nontrivial πŸ“–mathematicalβ€”Nontrivial
WithTop
β€”Option.nontrivial
not_top_le_coe πŸ“–mathematicalβ€”WithTop
instLE
Top.top
top
some
β€”le_def'
coe_ne_top
top_ne_coe
not_top_lt πŸ“–mathematicalβ€”WithTop
instLT
Top.top
top
β€”lt_def'
top_ne_coe
ofDual_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
OrderDual
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
some
WithBot.some
OrderDual.ofDual
β€”β€”
ofDual_apply_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
OrderDual
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
Top.top
top
Bot.bot
WithBot.bot
β€”ofDual_top
ofDual_le_iff πŸ“–mathematicalβ€”WithBot
WithBot.instLE
DFunLike.coe
Equiv
WithTop
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLE
OrderDual.instLE
WithBot.toDual
β€”bot_le
le_top
WithBot.le_bot_iff
WithBot.coe_ne_bot
top_le_iff
coe_ne_top
WithBot.coe_le_coe
coe_le_coe
OrderDual.toDual_le
ofDual_le_ofDual_iff πŸ“–mathematicalβ€”WithBot
WithBot.instLE
DFunLike.coe
Equiv
WithTop
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLE
OrderDual.instLE
β€”bot_le
le_top
WithBot.le_bot_iff
WithBot.coe_ne_bot
top_le_iff
coe_ne_top
WithBot.coe_le_coe
OrderDual.ofDual_le_ofDual
coe_le_coe
ofDual_lt_iff πŸ“–mathematicalβ€”WithBot
WithBot.instLT
DFunLike.coe
Equiv
WithTop
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLT
OrderDual.instLT
WithBot.toDual
β€”WithBot.not_lt_bot
not_top_lt
WithBot.bot_lt_coe
coe_lt_top
WithBot.coe_lt_coe
coe_lt_coe
OrderDual.toDual_lt
ofDual_lt_ofDual_iff πŸ“–mathematicalβ€”WithBot
WithBot.instLT
DFunLike.coe
Equiv
WithTop
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
instLT
OrderDual.instLT
β€”WithBot.not_lt_bot
not_top_lt
WithBot.bot_lt_coe
coe_lt_top
WithBot.coe_lt_coe
OrderDual.ofDual_lt_ofDual
coe_lt_coe
ofDual_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
OrderDual
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
map
WithBot.map
OrderDual.ofDual
OrderDual.toDual
β€”β€”
ofDual_symm πŸ“–mathematicalβ€”Equiv.symm
WithTop
OrderDual
WithBot
ofDual
WithBot.toDual
β€”β€”
ofDual_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
WithTop
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
ofDual
WithBot.toDual
β€”β€”
ofDual_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
OrderDual
WithBot
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
Top.top
top
Bot.bot
WithBot.bot
β€”β€”
some_eq_coe πŸ“–mathematicalβ€”someβ€”β€”
some_eq_map_iff πŸ“–mathematicalβ€”some
map
β€”top_ne_coe
strictAnti_iff πŸ“–mathematicalβ€”StrictAnti
WithTop
instPreorder
some
Preorder.toLT
Top.top
top
β€”strictMono_iff
strictMono_iff πŸ“–mathematicalβ€”StrictMono
WithTop
instPreorder
some
Preorder.toLT
Top.top
top
β€”StrictMono.comp
coe_strictMono
coe_lt_top
forall
lt_irrefl
not_top_lt
coe_lt_coe
strictMono_map_iff πŸ“–mathematicalβ€”StrictMono
WithTop
instPreorder
map
β€”strictMono_iff
coe_lt_coe
coe_lt_top
toDual_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
WithBot
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
some
WithBot.some
OrderDual.toDual
β€”β€”
toDual_apply_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
WithBot
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
Top.top
top
Bot.bot
WithBot.bot
β€”toDual_top
toDual_le_iff πŸ“–mathematicalβ€”WithBot
OrderDual
WithBot.instLE
OrderDual.instLE
DFunLike.coe
Equiv
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLE
WithBot.ofDual
β€”bot_le
le_top
WithBot.le_bot_iff
WithBot.coe_ne_bot
top_le_iff
coe_ne_top
WithBot.coe_le_coe
OrderDual.toDual_le
coe_le_coe
toDual_le_toDual_iff πŸ“–mathematicalβ€”WithBot
OrderDual
WithBot.instLE
OrderDual.instLE
DFunLike.coe
Equiv
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLE
β€”bot_le
le_top
WithBot.le_bot_iff
WithBot.coe_ne_bot
top_le_iff
coe_ne_top
WithBot.coe_le_coe
OrderDual.toDual_le_toDual
coe_le_coe
toDual_lt_iff πŸ“–mathematicalβ€”WithBot
OrderDual
WithBot.instLT
OrderDual.instLT
DFunLike.coe
Equiv
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLT
WithBot.ofDual
β€”WithBot.not_lt_bot
not_top_lt
WithBot.bot_lt_coe
coe_lt_top
WithBot.coe_lt_coe
OrderDual.toDual_lt
coe_lt_coe
toDual_lt_toDual_iff πŸ“–mathematicalβ€”WithBot
OrderDual
WithBot.instLT
OrderDual.instLT
DFunLike.coe
Equiv
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
toDual
instLT
β€”WithBot.not_lt_bot
not_top_lt
WithBot.bot_lt_coe
coe_lt_top
WithBot.coe_lt_coe
OrderDual.toDual_lt_toDual
coe_lt_coe
toDual_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
WithBot
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
map
WithBot.map
OrderDual.toDual
OrderDual.ofDual
β€”β€”
toDual_symm πŸ“–mathematicalβ€”Equiv.symm
WithTop
WithBot
OrderDual
toDual
WithBot.ofDual
β€”β€”
toDual_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithBot
OrderDual
WithTop
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toDual
WithBot.ofDual
β€”β€”
toDual_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
WithTop
WithBot
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
Top.top
top
Bot.bot
WithBot.bot
β€”β€”
top_le_iff πŸ“–mathematicalβ€”WithTop
instLE
Top.top
top
β€”not_top_le_coe
coe_ne_top
le_top
top_ne_coe πŸ“–β€”β€”β€”β€”β€”
total_le πŸ“–mathematicalβ€”WithTop
instLE
β€”β€”
untopA_eq_untop πŸ“–mathematicalβ€”untopA
untop
β€”β€”
untopA_le πŸ“–mathematicalWithTop
Preorder.toLE
instPreorder
PartialOrder.toPreorder
some
untopAβ€”untopD_le
untopA_le_iff πŸ“–mathematicalβ€”untopA
WithTop
instLE
some
β€”untopD_le_iff
untopA_lt_iff πŸ“–mathematicalβ€”untopA
WithTop
instLT
some
β€”untopD_lt_iff
untopA_mono πŸ“–mathematicalWithTop
instLE
untopAβ€”untopD_mono
untopD_coe πŸ“–mathematicalβ€”untopD
some
β€”β€”
untopD_eq_iff πŸ“–mathematicalβ€”untopD
some
Top.top
WithTop
top
β€”top_ne_coe
coe_ne_top
untopD_eq_self_iff πŸ“–mathematicalβ€”untopD
some
Top.top
WithTop
top
β€”untopD_eq_iff
untopD_eq_untopD_iff πŸ“–mathematicalβ€”untopD
some
Top.top
WithTop
top
β€”untopD_eq_self_iff
top_ne_coe
untopD_eq_iff
coe_ne_top
untopD_le πŸ“–mathematicalWithTop
Preorder.toLE
instPreorder
PartialOrder.toPreorder
some
untopDβ€”untopD_le_iff
ne_top_of_le_ne_top
coe_ne_top
untopD_le_iff πŸ“–mathematicalβ€”untopD
WithTop
instLE
some
β€”CanLift.prf
canLift
coe_le_coe
untopD_lt_iff πŸ“–mathematicalβ€”untopD
WithTop
instLT
some
β€”CanLift.prf
canLift
coe_lt_coe
untopD_mono πŸ“–mathematicalWithTop
instLE
untopDβ€”CanLift.prf
canLift
top_le_iff
coe_ne_top
coe_le_coe
untopD_top πŸ“–mathematicalβ€”untopD
Top.top
WithTop
top
β€”β€”
untop_coe πŸ“–mathematicalWithTop
some
Top.top
top
coe_ne_top
untopβ€”β€”
untop_eq_iff πŸ“–mathematicalβ€”untop
some
β€”top_ne_coe
untop_le_iff πŸ“–mathematicalβ€”untop
WithTop
instLE
some
β€”CanLift.prf
canLift
coe_le_coe
untop_le_untop_iff πŸ“–mathematicalβ€”untop
WithTop
instLE
β€”untop_le_iff
coe_untop
untop_lt_iff πŸ“–mathematicalβ€”untop
WithTop
instLT
some
β€”CanLift.prf
canLift
coe_lt_coe
untop_lt_untop_iff πŸ“–mathematicalβ€”untop
WithTop
instLT
β€”untop_lt_iff
coe_untop
untop_mono πŸ“–mathematicalWithTop
instLE
untopβ€”untop_le_untop_iff

WithTop.IsWellOrder

Theorems

NameKindAssumesProvesValidatesDepends On
gt πŸ“–mathematicalβ€”IsWellOrder
WithTop
Preorder.toLT
WithTop.instPreorder
β€”WithTop.trichotomous.gt
IsWellOrder.toTrichotomous
instIsTransGt
WithTop.instWellFoundedGT
IsWellOrder.toIsWellFounded
lt πŸ“–mathematicalβ€”IsWellOrder
WithTop
Preorder.toLT
WithTop.instPreorder
β€”WithTop.trichotomous.lt
IsWellOrder.toTrichotomous
instIsTransLt
WithTop.instWellFoundedLT
IsWellOrder.toIsWellFounded

WithTop.trichotomous

Theorems

NameKindAssumesProvesValidatesDepends On
gt πŸ“–mathematicalβ€”WithTop
Preorder.toLT
WithTop.instPreorder
β€”Std.Trichotomous.swap
lt
lt πŸ“–mathematicalβ€”WithTop
Preorder.toLT
WithTop.instPreorder
β€”β€”

(root)

Definitions

NameCategoryTheorems
WithBot πŸ“–CompOp
829 mathmath: Polynomial.degree_map_le, WithBot.coe_toDualTopEquiv_eq, Polynomial.modByMonic_eq_self_iff, WithBot.ofDual_map, WithTop.map_ofDual, WithBot.mul_bot', WithBot.add_le_add_iff_right', IsAlgClosed.roots_eq_zero_iff_degree_nonpos, WittVector.RecursionMain.succNthDefiningPoly_degree, LaurentPolynomial.degree_C_mul_T_ite, WithBot.coe_eq_one, LatticeHom.withTopWithBot_apply, Polynomial.degree_mul_le, Order.LTSeries.length_le_krullDim, Polynomial.exists_degree_le_of_mem_span_of_finite, WithBot.instPosMulStrictMono, WithBot.lt_ofDual_iff, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim, Finset.max_union, Order.krullDim_le_of_strictComono_and_surj, WithBot.le_unbotA_iff, NonemptyInterval.mem_coe_interval, ringKrullDim_succ_le_ringKrullDim_polynomial, Order.krullDim_of_noMaxOrder, WithBot.coe_le_zero, WithTop.toDualBotEquiv_coe, WithBot.le_unbot_iff, NonemptyInterval.coe_inv_interval, WithBot.sum_eq_bot_iff, WithBot.addRightMono, WithBot.not_coe_le_bot, WithBot.zeroLEOneClass, Order.krullDim_lt_coe_iff, WithBot.orderIsoPUnitSumLex_symm_inl, Polynomial.coe_lt_degree, CategoryTheory.Retract.injectiveDimension_le, Polynomial.degree_le_degree, WithTop.toDual_top, BoxIntegral.Box.splitUpper_eq_bot, WithBot.coe_inf, WithBot.lt_iff_exists_coe_btwn, WithBot.addLeftMono, WithBot.trichotomous.gt, NonemptyInterval.coe_neg_interval, Polynomial.MonicDegreeEq.degree, List.maximum_cons, CategoryTheory.injectiveDimension_le_iff, WithBot.subtypeOrderIso_symm_apply, Lagrange.degree_basisDivisor_self, WithBot.coe_lt_one, WithBot.lt_unbotA_iff, Cubic.degree_of_b_eq_zero, Polynomial.degree_quadratic_lt, WithBot.instMulPosMono, Module.supportDim_eq_bot_iff_subsingleton, WithTop.ofDual_symm, WithBot.map_eq_one_iff, Polynomial.degree_pow_le, Order.krullDim_nonneg_iff, WithBot.map_eq_natCast_iff, Ring.krullDimLE_iff, ringKrullDim_eq_one_iff_of_isLocalRing_isDomain, BoxIntegral.Box.coe_bot, WithBot.eq_bot_iff_forall_ne, Polynomial.zero_le_degree_iff, WithBot.eq_bot_iff_forall_lt, Polynomial.Sequence.degree_eq', Polynomial.degree_pow, Polynomial.mod_eq_self_iff, WithBot.le_of_forall_lt_iff_le, WithTop.lt_toDual_iff, WithBot.range_coe, SupHom.withBot_id, PowerSeries.degree_weierstrassMod_lt, Polynomial.degree_eq_natDegree, LatticeHom.coe_withTopWithBot, Polynomial.degree_gcd_le_left, Order.krullDim_pos_iff, WithTop.le_toDual_iff, Order.krullDim_le_one_iff, Equiv.withBotCongr_apply, Module.supportDim_add_length_eq_supportDim_of_isRegular, WithBot.ofDual_le_iff, BoxIntegral.Box.disjoint_withBotCoe, WithBot.coe_eq_zero, WithBot.image_coe_Ioo, Nat.WithBot.add_eq_two_iff, WithBot.orderIsoPUnitSumLex_symm_inr, WithBot.coe_injective, WithBot.noTopOrder, WithBot.lt_coe_iff, Polynomial.degree_le_of_dvd, LatticeHom.withTopWithBot_id, Polynomial.div_tendsto_zero_iff_degree_lt, Polynomial.degree_list_prod, BoxIntegral.Box.splitUpper_le, Polynomial.degree_lt_degree_mul_X, Polynomial.Splits.degree_le_one_of_irreducible, Polynomial.divByMonic_eq_zero_iff, Order.krullDim_eq_zero_of_unique, Order.le_krullDim_iff, NonemptyInterval.coe_sub_interval, Ordnode.Bounded.weak_left, NonemptyInterval.coe_one_interval, minpoly.degree_pos, WithBot.lt_add_one_iff, WithBot.coe_sInf', Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg, Polynomial.IsDistinguishedAt.degree_eq_coe_lift_order_map, WithBot.instUncountable, Polynomial.degree_list_prod_le, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim_of_mem_jacobson, WithBot.IsWellOrder.lt, Finset.max_mono, WithBot.add_le_add_iff_left, ringKrullDim_succ_le_ringKrullDim_powerseries, Lagrange.eq_interpolate_iff, WithBot.unbot_one, Order.krullDim_eq_top, LatticeHom.withTopWithBot_comp, WithBot.map_ofDual, WithBot.lt_succ, WithBot.one_lt_coe, Polynomial.degree_X_pow_add_C, Order.coheight_le_krullDim, Polynomial.degree_pos_of_root, Polynomial.degree_X_sub_C, WithBot.addLeftReflectLT, Order.krullDim_nonpos_iff_forall_isMax, WithBot.map_eq_zero_iff, PowerSeries.degree_trunc_lt, Polynomial.card_roots_map_le_degree, WithBot.add_coe_eq_bot_iff, NonemptyInterval.coe_nsmul_interval, Cubic.degree_of_a_eq_zero', MvPolynomial.degree_optionEquivLeft, WithBot.coe_eq_top, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim, IsMax.withBot, ringKrullDim_nonneg_of_nontrivial, WithBot.eq_top_iff_forall_ge, WithBot.Ioc_bot_coe, ringKrullDimZero_iff_ringKrullDim_eq_zero, LatticeHom.withTopWithBot'_toFun, WithBot.lt_unbotD_iff, WithBot.addLECancellable_of_ne_bot, Order.krullDim_nonpos_iff_forall_isMin, Finset.max_pair, WithBot.mul_coe_eq_bind, Polynomial.degree_mono, WithBot.coe_le_iff, Polynomial.Splits.degree_eq_card_roots, Polynomial.degree_C_lt_degree_C_mul_X, Polynomial.tendsto_atBot_iff_leadingCoeff_nonpos, List.coe_le_maximum_iff, WithBot.Ioi_coe, Cubic.degree_of_a_ne_zero', WithBot.ofDual_apply_coe, WithBot.monotone_map_iff, Module.supportDim_le_of_injective, Order.succ_eq_zero, Order.krullDim_int, Polynomial.degree_quadratic, WithBot.instPosMulReflectLE, NonemptyInterval.coe_pow_interval, WithBot.coe_addHom, OrderHom.withBotMap_coe, minpoly.degree_le, WithBot.le_unbotD_iff, NonemptyInterval.coe_add_interval, WithBot.image_coe_Ici, WithBot.Ico_bot_coe, Polynomial.abs_tendsto_atTop_iff, PowerSeries.IsWeierstrassDivisionAt.degree_lt, Polynomial.degree_lt_wf, Equiv.withBotSubtypeNe_symm_apply_coe, WithTop.ofDual_apply_top, WithBot.mapβ‚‚_eq_bot_iff, WithBot.unbotD_bot, Polynomial.degree_cubic_lt, WithBot.strictAnti_iff, WithBot.le_coe_iff, Polynomial.degree_C, WithBot.ge_of_forall_gt_iff_ge, Order.height_le_krullDim, Finset.max_eq_sup_coe, WithBot.bot_add, WithBot.coe_le, Polynomial.degree_modByMonic_le, WithBot.succ_eq_bot, Polynomial.Splits.degree_eq_one_of_irreducible, NonemptyInterval.coe_div_interval, Polynomial.natDegree_lt_natDegree_iff, Matrix.charpoly_degree_eq_dim, CategoryTheory.injectiveDimension_ge_iff, WithBot.le_iff_forall, WithBot.toDual_map, OrderIso.withBotCongr_symm_apply, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_maximalIdeal, Polynomial.int_cyclotomic_rw, LaurentPolynomial.degree_C, Polynomial.degree_divX_lt, WithBot.unbot_lt_iff, WithBot.exists_coe_le, LatticeHom.withBot_id, Order.bot_lt_krullDim, Polynomial.degree_eraseLead_lt, WithBot.coe_pos, WithBot.instMulPosStrictMono, topologicalKrullDim_subspace_le, Polynomial.Chebyshev.degree_T, Polynomial.degree_X_pow_le, StrictMono.withBot_map, WithBot.succ_mono, topologicalKrullDim_zero_of_discreteTopology, ringKrullDim_quotient_le, WithBot.map_bot, WithBot.le_toDual_iff, Polynomial.degree_monomial_le, WithBot.pred_coe, Polynomial.natDegree_lt_iff_degree_lt, WithTop.ofDual_lt_ofDual_iff, Lagrange.degree_interpolate_erase_lt, WithBot.unbotD_lt_iff, ringKrullDim_succ_le_of_surjective, BoxIntegral.Box.splitLower_le, WithBot.toDual_bot, Finset.max_mem_image_coe, Finset.fold_max_add, IsDiscreteValuationRing.toWithBotNat_zero, Ideal.primeHeight_le_ringKrullDim, ringKrullDim_eq_bot_of_subsingleton, WithTop.toDualBotEquiv_symm_top, WithBot.unbot_zero, Polynomial.degree_quadratic_le, CategoryTheory.projectiveDimension_lt_iff, Equiv.withBotCongr_refl, Lagrange.degree_interpolate_lt, Finset.coe_sup', WithBot.preimage_coe_Ioc, WithBot.coe_min, WithBot.add_bot, WithBot.map_natCast, Polynomial.abs_tendsto_atBot_iff, Polynomial.degree_X_le, Polynomial.Sequence.degree_eq, WithBot.coe_wcovBy_coe, WithBot.top_eq_coe, WithTop.toDual_lt_iff, WithBot.coe_lt_zero, WithBot.zero_eq_coe, WithBot.preimage_coe_Ioi, AddMonoidHom.withBotMap_apply, Cubic.degree_of_d_ne_zero, ringKrullDim_le_iff_height_le, Polynomial.degree_derivative_lt, minpoly.degree_le_of_ne_zero, div_eq_quo_add_sum_rem_div, Polynomial.degree_freeMonic, Interval.coe_injective, PowerBasis.mem_span_pow', Finset.max_mem_insert_bot_image_coe, Nat.WithBot.add_eq_one_iff, WithBot.exists, LatticeHom.withBot_toFun, WithBot.add_le_add_iff_right, WithBot.lt_iff_exists_coe, Order.krullDim_nonpos_of_subsingleton, WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, WithBot.Iio_coe, List.maximum_nil, Polynomial.degree_derivative_eq, WithZero.toMulBot_lt, WithBot.bot_lt_add, Module.ringKrullDim_quotient_add_one_of_mem_nonZeroDivisors, WithBot.unbotD_eq_iff, Polynomial.degree_erase_lt, WithBot.eq_bot_iff_forall_le, Order.krullDim_WithTop, IsInducing.topologicalKrullDim_le, Polynomial.degree_le_of_natDegree_le, InfHom.withBot_toFun, ringKrullDim_le_ringKrullDim_quotient_add_card, Polynomial.Splits.def, IsDiscreteValuationRing.bot_lt_toWithBotNat_iff, WithBot.succ_one, Nat.WithBot.add_eq_three_iff, WithBot.image_coe_Iio, Lagrange.degree_basisDivisor_of_ne, Ideal.height_le_ringKrullDim_quotient_add_one, WithBot.addLECancellable_coe, PowerBasis.degree_minpoly, WithBot.Iic_coe, Polynomial.splits_iff, WithBot.mapβ‚‚_bot_left, Polynomial.degree_sum_le, Polynomial.degree_pos_of_ne_zero_of_nonunit, withBotSucc_zero, WithBot.toDual_apply_bot, Polynomial.degree_hermite, Irreducible.degree_pos, WithBot.image_coe_Ico, WithBot.Ioc_coe, WithBot.instPosMulMono, Lagrange.degree_nodal, Polynomial.Monic.degree_pos, Finset.coe_sup_of_nonempty, Polynomial.degree_multiset_prod_of_monic, Cubic.degree_of_d_eq_zero, WithBot.unbotD_zero_mul, WithBot.lt_iff_exists_coe_btwn', WithBot.toDualTopEquiv_coe, WithBot.bot_neg, Polynomial.degree_X_pow_sub_C, Polynomial.degree_le_natDegree, WithBot.natCast_eq_map_iff, WithBot.image_coe_Ioi, WithBot.monotone_iff, WithBot.range_eq, NonemptyInterval.coe_top_interval, Polynomial.degree_divByMonic_le, Polynomial.degree_le_mul_left, IsClosedEmbedding.topologicalKrullDim_le, ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank, WithBot.map_one, Polynomial.exists_multiset_roots, Finset.max_le_iff, Ideal.mem_leadingCoeffNth, Monotone.withBot_map, WithBot.bot_lt_natCast, Function.Embedding.coeWithBot_apply, WithBot.preimage_coe_Iio, Order.krullDim_enat, WithBot.lt_def, Finset.max_eq_sup_withBot, WithBot.bot_mul_bot, WithZero.toMulBot_coe_ofAdd, Polynomial.degree_C_lt, Polynomial.degree_C_mul_X_pow_le, WithBot.add_eq_coe, WithBot.instWellFoundedLT, WithTop.ofDual_apply_coe, BoxIntegral.Box.not_disjoint_coe_iff_nonempty_inter, Polynomial.degree_zero, WithTop.toDual_apply_top, Polynomial.rootOfSplits'_eq_rootOfSplits, Polynomial.degree_intCast_le, Polynomial.div_eq_zero_iff, Interval.coe_coe, WithBot.image_coe_Iic, BoxIntegral.Box.biUnion_coe_eq_coe, Nat.WithBot.lt_zero_iff, Polynomial.exists_degree_le_of_mem_span, List.maximum_eq_bot, WithBot.map_add, WithBot.bot_covBy_coe, WithBot.coe_le_coe, WithBot.charZero, Polynomial.Chebyshev.degree_U_of_ne_neg_one, WithBot.image_coe_Ioc, Finset.max_zero, WithBot.preimage_coe_bot, ringKrullDim_add_length_eq_ringKrullDim_of_isRegular, Order.krullDim_le_one_iff_of_boundedOrder, Polynomial.eraseLead_degree_le, Polynomial.degreeLT_succ_eq_degreeLE, OrderIso.withBotCongr_refl, WithBot.mul_def, WithBot.toDual_le_iff, WithBot.ofDual_lt_iff, Polynomial.degree_X_sub_C_le, WithBot.preimage_coe_Ici, Polynomial.degree_eq_iff_natDegree_eq_of_pos, Polynomial.degree_C_mul_X_le, WithBot.toDual_apply_coe, WithBot.preimage_coe_Ico, WithBot.toDual_lt_toDual_iff, Ideal.is_fg_degreeLE, Ideal.height_le_ringKrullDim_quotient_add_encard, Polynomial.degree_wronskian_lt_add, WithBot.lt_unbot_iff, withBotSucc_one, WithBot.ofDual_lt_ofDual_iff, WithTop.ofDual_le_ofDual_iff, WithBot.orderSucc_bot, WithBot.pred_coe_of_not_isMin, WithBot.map_eq_bot_iff, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_nonZeroDivisors, LatticeHom.withTopWithBot_toFun, WithBot.coe_add_eq_bot_iff, WithBot.bot_mul', Order.krullDim_eq_iSup_coheight, Order.krullDim_eq_bot_iff, SupHom.withBot_comp, WithBot.sSup_empty, WithBot.coe_iInf, WithBot.noMaxOrder, Module.supportDim_quotSMulTop_succ_eq_supportDim, Nat.WithBot.one_le_iff_zero_lt, WithTop.toDual_lt_toDual_iff, Polynomial.degree_mul', WithBot.ofDual_symm_apply, Polynomial.degree_one_le, WithBot.recBotCoe_bot, Polynomial.tendsto_nhds_iff, WithBot.succ_unbot, BoxIntegral.Box.splitLower_eq_bot, ringKrullDim_quotient_succ_le_of_nonZeroDivisor, BoxIntegral.Box.coe_inf, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_jacobson, WithZero.toMulBot_zero, Polynomial.Chebyshev.degree_U_neg_one, OrderIso.withBotCongr_apply, WithBot.strictMono_iff, Polynomial.degree_cubic, WithBot.forall, BoxIntegral.Box.mk'_eq_bot, WithBot.coe_nonneg, Cubic.degree_of_a_eq_zero, WithBot.map_le_iff, WithBot.toDualTopEquiv_symm_bot, Polynomial.degree_X_pow, Order.krullDim_eq_iSup_height, Cubic.equiv_symm_apply_b, WithTop.toDual_symm_apply, WithTop.ofDual_map, BoxIntegral.Box.disjoint_splitLower_splitUpper, WithTop.map_toDual, IsPrincipalIdealRing.ringKrullDim_eq_one, Lagrange.degree_basis, ringKrullDim_add_natCard_le_ringKrullDim_mvPolynomial, WithBot.unbot_le_unbot, WithBot.succ_zero, Order.krullDim_eq_zero_iff_of_orderTop, Finset.max_eq_bot, Polynomial.degree_one, WithBot.instIsEmptySuccOrderOfNonempty, Polynomial.Splits.splits, minpoly.IsIntegrallyClosed.degree_le_of_ne_zero, WithBot.coe_iSup, Polynomial.degree_prod_le, OrderEmbedding.withBotCoe_apply, Polynomial.div_eq_quo_add_rem_div, Polynomial.degree_prod, SupHom.withBot_toFun, BoxIntegral.Box.withBotCoe_subset_iff, Polynomial.degree_zero_le, Polynomial.Monic.degree_pos_of_not_isUnit, ringKrullDim_eq_zero_of_isField, WithBot.instNoZeroDivisors, Polynomial.isBoundedUnder_abs_atBot_iff, WithBot.lt_toDual_iff, Order.one_le_krullDim_iff, InfHom.withBot'_toFun, WithBot.sInf_empty, Equiv.withBotCongr_symm, LatticeHom.withBot_comp, WithBot.not_lt_bot, WeierstrassCurve.Affine.degree_polynomial, Order.krullDim_le_of_strictMono, WithBot.toDualTopEquiv_symm_coe, SupHom.withBot'_toFun, WithBot.unbotD_le_iff, WithTop.toDual_symm, Polynomial.degree_pos_of_not_isUnit_of_dvd_monic, WithBot.map_comp_map, WithBot.ofDual_bot, LinearRecurrence.charPoly_degree_eq_order, ringKrullDim_le_iff_isMaximal_height_le, Finset.max_eq_top, WithBot.strictMono_map_iff, Finset.max_empty, ringKrullDim_le_ringKrullDim_add_card, WithBot.ciSup_empty, Lagrange.degree_interpolate_le, Cubic.degree_of_c_ne_zero, CategoryTheory.projectiveDimension_le_iff, Cubic.degree_of_a_ne_zero, minpoly.min, MvPolynomial.degree_finSuccEquiv, Module.supportDim_le_ringKrullDim, BoxIntegral.Box.disjoint_coe, WithTop.toDual_le_toDual_iff, Polynomial.mem_closure_X_union_C, Polynomial.supDegree_eq_degree, Module.supportDim_le_supportDim_quotSMulTop_succ, WithBot.addLECancellable_iff_ne_bot, CategoryTheory.projectiveDimension_ge_iff, Field.primitive_element_iff_minpoly_degree_eq, WithBot.denselyOrdered, Equiv.withBotSubtypeNe_apply, Polynomial.degree_X, WithBot.unbot_le_unbot_iff, Ordnode.Bounded.weak, Module.supportDim_quotSMulTop_succ_eq_supportDim_mem_jacobson, WithBot.succ_bot, Polynomial.degree_multiset_prod_le, ringKrullDim_lt_top, List.not_maximum_lt_of_mem', WithTop.le_ofDual_iff, CategoryTheory.injectiveDimension_lt_iff, Polynomial.degree_prod_of_monic, List.le_maximum_of_mem', Polynomial.degree_sub_le, Polynomial.degree_of_subsingleton, WithBot.le_ofDual_iff, WithBot.preimage_coe_Icc, Polynomial.Monic.degree_mul, WithBot.isOrderedAddMonoid, WithBot.orderIsoPUnitSumLex_toLex, Polynomial.ringKrullDim_le, Matrix.charpoly_sub_diagonal_degree_lt, WithBot.unbotD_one, Polynomial.degree_eq_zero_of_isUnit, LatticeHom.withBot'_toFun, Polynomial.degree_smul_le, WithBot.coe_lt_coe, WithBot.lt_def_aux, Finset.max_insert, Nat.WithBot.lt_one_iff_le_zero, Cubic.equiv_symm_apply_c, WithBot.mul_eq_bot_iff, NonemptyInterval.coe_zero_interval, minpoly.degree_eq_one_iff, WithBot.lt_coe_bot, Polynomial.degree_lt_degree, WithBot.total_le, Polynomial.degree_le_iff_coeff_zero, WithTop.toDualBotEquiv_symm_coe, WithBot.instArchimedean, WithBot.coe_biInf, WithBot.orderSucc_coe, Polynomial.isBoundedUnder_abs_atTop_iff, WithBot.bot_lt_iff_ne_bot, Polynomial.card_roots, WithBot.pred_coe_of_isMin, Polynomial.ofFn_degree_lt, CategoryTheory.projectiveDimension_eq_bot_iff, WithBot.canLift, WithZero.toMulBot_coe, IsSepClosed.degree_eq_one_of_irreducible, Polynomial.degree_eq_card_roots, WithBot.subtypeOrderIso_apply_coe, Polynomial.degree_add_degree_leadingCoeff_inv, WithBot.one_eq_coe, WithBot.Ico_coe, PowerBasis.degree_minpolyGen, Order.krullDim_le_one_iff_forall_isMax, WithBot.unbot_le_iff, WithBot.ofDual_symm, Order.krullDim_withBot, WithTop.ofDual_le_iff, WithBot.le_def_aux, WithBot.denselyOrdered_iff, Order.krullDim_pos_iff_of_orderTop, Polynomial.degree_modByMonic_lt, WithBot.succ_natCast, WithBot.instMulPosReflectLT, Cubic.degree_of_d_eq_zero', Polynomial.degree_eq_one_of_irreducible_of_splits, ringKrullDim_nat, Polynomial.degree_lt_iff_coeff_zero, IsDiscreteValuationRing.toWithBotNat_eq_bot_iff, WithBot.nontrivial, WithBot.le_add_self, Polynomial.div_tendsto_atBot_zero_iff_degree_lt, Nat.cast_withBot, WithBot.bot_lt_coe, LaurentPolynomial.degree_C_ite, WithBot.Icc_coe, WithBot.toDualTopEquiv_bot, WithBot.le_def', div_eq_quo_add_rem_div_add_rem_div, WithBot.sum_lt_bot, Order.krullDim_eq_zero, WithBot.toDual_lt_iff, WithBot.coe_pow, Polynomial.degree_le_zero_iff, WithBot.coe_mono, Order.krullDim_pos_iff_of_orderBot, Equiv.withBotCongr_trans, Polynomial.degree_add_le, WithBot.preimage_coe_Iic, CategoryTheory.injectiveDimension_eq_bot_iff, WithBot.toDual_le_toDual_iff, List.maximum_mono, Polynomial.isUnit_iff_degree_eq_zero, WithBot.instIsOrderedRing, WithBot.coe_one, Polynomial.degree_pos_of_aeval_root, Polynomial.degree_cyclotomic', WithBot.mul_bot, Order.coheight_coe_withBot, InfHom.withBot_comp, WithBot.coe_top, WithBot.unbotD_zero, MvPolynomial.weightedTotalDegree'_zero, WithBot.unbotA_lt_iff, WithTop.ofDual_lt_iff, Module.supportDim_le_supportDim_quotSMulTop_succ_of_mem_jacobson, WithBot.Ioo_coe, Polynomial.le_degree_of_ne_zero, WithBot.lt_def', Cubic.equiv_apply_coe, PowerSeries.IsWeierstrassFactorization.degree_eq_coe_lift_order_map, instFiniteWithBot, Polynomial.degree_eq_one_of_irreducible_of_root, WithBot.unbot_lt_unbot, WithBot.zero_eq_map_iff, Polynomial.degree_mul_X, Polynomial.le_degree_of_mem_supp, Polynomial.degree_annIdealGenerator_le_of_mem, WithBot.coe_nsmul, WithBot.Ico_coe_coe, height_le_ringKrullDim_quotient_add_spanFinrank, WithBot.le_bot_iff, PowerSeries.IsWeierstrassFactorizationAt.degree_eq_coe_lift_order_map_of_ne_top, Polynomial.abs_isBoundedUnder_iff, WithBot.instMulPosReflectLE, Polynomial.natDegree_eq_zero_iff_degree_le_zero, Polynomial.degree_sub_lt, PowerSeries.isWeierstrassDivisionAt_iff, WithBot.instWellFoundedGT, BoxIntegral.Prepartition.mem_inf, Nat.WithBot.add_eq_zero_iff, Polynomial.degree_update_le, WithBot.coeOrderHom_apply, ringKrullDim_add_enatCard_le_ringKrullDim_mvPolynomial, Order.krullDim_eq_bot, WithBot.mapβ‚‚_bot_right, Polynomial.integralNormalization_coeff, Cubic.degree_of_b_ne_zero', Polynomial.degree_leadingCoeff_inv, Polynomial.Sequence.degree_strictMono, WithBot.add_right_inj, Polynomial.degree_shiftedLegendre, WithTop.ofDual_symm_apply, Order.krullDim_eq_length_of_finiteDimensionalOrder, Polynomial.span_le_degreeLE_of_finite, WithBot.Ioo_coe_coe, WithBot.toDual_symm_apply, WithBot.map_injective, BoxIntegral.Prepartition.mem_restrict, Polynomial.degree_pos_of_irreducible, Cubic.degree_of_b_eq_zero', Order.KrullDimLE.krullDim_le, WithBot.coe_max, WithBot.forall_le_coe_iff_le, ringKrullDim_le_ringKrullDim_add_spanFinrank, Polynomial.degree_cubic_le, LaurentPolynomial.degree_eq_bot_iff, Cubic.degree_of_c_ne_zero', WithBot.le_self_add, WithBot.bot_lt_sum_iff, Cubic.degree_of_d_ne_zero', OrderIso.withBotCongr_trans, Cubic.equiv_symm_apply_d, ZeroHom.withBotMap_apply, LatticeHom.coe_withBot, WithBot.Ioo_bot_coe, Polynomial.degree_div_le, Irreducible.degree_le_two, Polynomial.degree_linear_le, WithBot.bot_mul, WithTop.toDual_map, Order.krullDim_eq_one_iff_of_boundedOrder, WithBot.forall_coe_le_iff_le, MvPolynomial.weightedTotalDegree'_eq_bot_iff, WithBot.preimage_coe_Ioc_bot, Order.krullDim_nonneg, Polynomial.degree_eq_card_roots', WithBot.coe_sup, WithBot.coe_add, Polynomial.degree_linear_lt_degree_C_mul_X_sq, Polynomial.degree_cyclotomic_pos, WithZero.toMulBot_le, WithBot.preimage_coe_Ioi_bot, Polynomial.degree_pos_of_evalβ‚‚_root, ringKrullDim_eq_zero_of_field, WithBot.coe_biSup, Polynomial.degree_quadratic_lt_degree_C_mul_X_cb, WithBot.none_eq_bot, WithBot.denselyOrdered_set_iff_subsingleton, Cubic.degree_of_c_eq_zero, Cubic.equiv_symm_apply_a, WithBot.coe_sSup', Polynomial.degree_C_mul_X, NonemptyInterval.coe_sup_interval, Order.krullDim_le_one_iff_forall_isMin, Polynomial.degree_pow', WithBot.toDual_symm, WithBot.addRightReflectLT, Polynomial.ringKrullDim_of_isNoetherianRing, Order.height_coe_withBot, OneHom.withBotMap_apply, Polynomial.natDegree_pos_iff_degree_pos, MvPolynomial.ringKrullDim_of_isNoetherianRing, Polynomial.degree_mod_lt, WithBot.unbotD_eq_unbotD_iff, WithBot.coe_sum, WithBot.Ioc_coe_coe, IsDiscreteValuationRing.toWithBotNat_le_toWithBotNat_iff, Polynomial.degree_multiset_prod, WithBot.unbot_lt_unbot_iff, Polynomial.mem_degreeLE, WithTop.toDual_le_iff, AddMonoidAlgebra.supDegree_withBot_some_comp, Polynomial.splits_iff_splits, CategoryTheory.Retract.projectiveDimension_le, WithBot.lt_iff_exists, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_jacobson, Polynomial.degree_sum_fin_lt, IsAlgClosed.degree_eq_one_of_irreducible, Polynomial.degree_eq_iff_natDegree_eq, WithBot.coe_mul_eq_bind, Polynomial.degreeLE_eq_span_X_pow, WithBot.succ_eq_succ, WithTop.ofDual_top, WithTop.lt_ofDual_iff, WithBot.coe_covBy_coe, Polynomial.degree_map_lt, Ideal.height_le_ringKrullDim_of_ne_top, WithBot.map_id, Cubic.degree_of_c_eq_zero', Polynomial.natDegree_le_iff_degree_le, Polynomial.Sequence.basis_degree_strictMono, WithBot.succ_strictMono, Polynomial.degree_add_eq_of_leadingCoeff_add_ne_zero, WithBot.instPosMulReflectLT, Polynomial.degree_monomial, Polynomial.degree_mul_X_pow, List.le_maximum_of_length_pos_iff, WithBot.instCountable, Order.krullDim_of_noMinOrder, WithBot.exists_coe_lt, LaurentPolynomial.degree_T_le, Polynomial.div_tendsto_atTop_zero_iff_degree_lt, ringKrullDim_le_of_surjective, WithBot.image_coe_Icc, Nat.WithBot.coe_nonneg, Polynomial.degree_C_mul_X_pow, WithBot.coe_natCast, Order.krullDim_of_isSimpleOrder, ringKrullDim_le_ringKrullDim_quotSMulTop_succ, Module.supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes, Polynomial.Chebyshev.degree_U_natCast, OrderEmbedding.withBotMap_apply, Polynomial.degree_erase_le, Module.supportDim_le_of_surjective, WithBot.map_zero, Polynomial.degree_cyclotomic, WithBot.le_coe_unbotD, Polynomial.leadingCoeff_eq_zero_iff_deg_eq_bot, Cubic.degree_of_zero, Order.krullDim_eq_zero_iff_of_orderBot, AddHom.withBotMap_apply, Finset.le_max, WithZero.toMulBot_symm_bot, WithBot.bot_lt_one, WithBot.IsWellOrder.gt, WithBot.Icc_coe_coe, NonemptyInterval.coe_mul_interval, Module.supportDim_eq_bot_of_subsingleton, Polynomial.degree_derivative_le, WithBot.unbotD_eq_self_iff, WithBot.add_left_inj, Polynomial.degree_linear, Order.bot_lt_krullDim_iff, Polynomial.mem_degreeLT, WithBot.le_def, Polynomial.Monic.degree_le_zero_iff_eq_one, WithBot.preimage_coe_Ioo_bot, PowerBasis.dim_le_degree_of_root, WithBot.Ici_coe, WithBot.add_lt_add_iff_left, WithBot.trichotomous.lt, LaurentPolynomial.degree_zero, WithBot.ofDual_le_ofDual_iff, Finset.max_one, WithZero.toMulBot_strictMono, Polynomial.degree_eq_bot, WithBot.some_mem_insertBot, WithTop.toDual_apply_coe, WithBot.unbotA_le_iff, LatticeHom.withBot_apply, WithBot.one_le_iff_pos, WithTop.coe_toDualBotEquiv, WithBot.bot_mem_insertBot, WithBot.Icc_bot_coe, LaurentPolynomial.degree_C_le, Polynomial.degree_list_sum_le, WithBot.map_toDual, List.maximum_concat, WithBot.one_eq_map_iff, Polynomial.degree_linear_lt, WithBot.coe_strictMono, Polynomial.degree_natCast_le, Polynomial.degree_coe_units, WithTop.toDualBotEquiv_top, Order.krullDim_nat, Polynomial.degree_modByMonic_le_left, Finset.sup_of_mem, List.maximum_append, ringKrullDim_le_ringKrullDim_quotient_add_encard, WithBot.bot_wcovBy_coe, Order.krullDimLE_iff, WithBot.coe_le_one, Polynomial.exists_mul_add_mul_eq_C_resultant, Cubic.degree_of_b_ne_zero, Polynomial.roots_def, InfHom.withBot_id, LaurentPolynomial.degree_C_mul_T_le, WithTop.eq_bot_iff_forall_le, Order.krullDim_eq_top_iff, WithBot.orderIsoPUnitSumLex_bot, WithBot.coe_zero, WithBot.one_le_coe, Polynomial.degree_X_add_C, degree_radical_le, Polynomial.degree_mul, Polynomial.degree_gcd_le_right, Polynomial.degree_C_le, WithBot.add_lt_add_iff_right, WithBot.add_eq_bot, WithBot.ofDual_apply_bot, WithBot.add_one_le_iff, WithBot.coe_mul, OrderIso.withBotCongr_symm, WithBot.preimage_coe_Ioo

---

← Back to Index