Documentation Verification Report

Gamma

πŸ“ Source: Mathlib/Probability/Distributions/Gamma.lean

Statistics

MetricCount
DefinitionsGamma, Gamma, gammaCDFReal, gammaMeasure, gammaPDF, gammaPDFReal, Gamma
7
TheoremsGamma, Gamma, Gamma, cdf_gammaMeasure_eq_integral, cdf_gammaMeasure_eq_lintegral, gammaCDFReal_eq_integral, gammaCDFReal_eq_lintegral, gammaPDFReal_nonneg, gammaPDFReal_pos, gammaPDF_eq, gammaPDF_of_neg, gammaPDF_of_nonneg, isProbabilityMeasureGamma, isProbabilityMeasure_gammaMeasure, lintegral_gammaPDF_eq_one, lintegral_gammaPDF_of_nonpos, measurable_gammaPDFReal, stronglyMeasurable_gammaPDFReal, lintegral_Iic_eq_lintegral_Iio_add_Icc
19
Total26

Complex

Definitions

NameCategoryTheorems
Gamma πŸ“–CompOp
55 mathmath: completedZeta_eq_tsum_of_one_lt_re, Gammaℝ_def, Gamma_neg_nat_eq_zero, Gamma_nat_eq_factorial, GammaSeq_tendsto_Gamma, ZMod.LFunction_one_sub, Gamma_add_one, not_differentiableAt_Gamma_neg_nat, Gamma_one, one_div_Gamma_eq_self_mul_one_div_Gamma_add_one, riemannZeta_one_sub, deriv_Gamma_add_one, HurwitzZeta.expZeta_one_sub, hasSum_mellin, Gamma_conj, HurwitzZeta.cosZeta_one_sub, deriv_Gamma_nat, continuousAt_Gamma_one, tendsto_self_mul_Gamma_nhds_zero, not_continuousAt_Gamma_zero, HurwitzZeta.hurwitzZetaEven_one_sub, hasSum_mellin_pi_mul, Gamma_eq_GammaAux, MeromorphicNFOn.Gamma, Gammaβ„‚_def, digamma_def, Gamma_mul_Gamma_eq_betaIntegral, hasSum_mellin_pi_mulβ‚€, differentiable_one_div_Gamma, not_differentiableAt_Gamma_zero, differentiableAt_Gamma_nat_add_one, HurwitzZeta.hurwitzZeta_one_sub, not_continuousAt_Gamma_neg_nat, differentiableAt_Gamma_one, hasDerivAt_Gamma_one, Gamma_eq_integral, hasDerivAt_Gamma_one_half, Gamma_mul_Gamma_add_half, differentiableAt_Gamma, Gamma_mul_Gamma_one_sub, continuousAt_Gamma, Gamma_def, Gamma_ofNat_eq_factorial, Meromorphic.Gamma, HurwitzZeta.hurwitzZetaOdd_one_sub, Gamma_eq_zero_iff, betaIntegral_eq_Gamma_mul_div, MeromorphicOn.Gamma, integral_cpow_mul_exp_neg_mul_Ioi, HurwitzZeta.sinZeta_one_sub, Gamma_zero, approx_Gamma_integral_tendsto_Gamma_integral, Gamma_ofReal, Gamma_one_half_eq, hasDerivAt_Gamma_nat

CongruenceSubgroup

Definitions

NameCategoryTheorems
Gamma πŸ“–CompOp
28 mathmath: Gamma_zero_bot, Gamma_mem', instFiniteIndexGamma, exists_Gamma_le_conj', mem_Gamma_one, Gamma_normal, ModularForm.levelOne_neg_weight_rank_zero, exists_Gamma_le_conj, Gamma_one_top, ModularFormClass.one_mem_strictPeriods_SL2Z, ModularForm.levelOne_weight_zero_rank_one, Gamma_cong_eq_self, EisensteinSeries.q_expansion_riemannZeta, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, EisensteinSeries.eisensteinSeries_SIF_apply, ModularGroup_T_pow_mem_Gamma, Gamma_is_cong_sub, strictWidthInfty_Gamma, EisensteinSeries.q_expansion_bernoulli, strictPeriods_Gamma, SlashInvariantForm.vAdd_width_periodic, EisensteinSeries.eisensteinSeriesSIF_apply, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn, EisensteinSeries.eisensteinSeries_SIF_MDifferentiable, Gamma_mem, EisensteinSeries.eisensteinSeriesSIF_mdifferentiable, SlashInvariantForm.T_zpow_width_invariant, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF

Meromorphic

Theorems

NameKindAssumesProvesValidatesDepends On
Gamma πŸ“–mathematicalβ€”Meromorphic
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.Gamma
β€”meromorphicOn_univ
MeromorphicNFOn.meromorphicOn
MeromorphicNFOn.Gamma

MeromorphicNFOn

Theorems

NameKindAssumesProvesValidatesDepends On
Gamma πŸ“–mathematicalβ€”MeromorphicNFOn
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.Gamma
Set.univ
β€”meromorphicNFOn_inv
AnalyticOnNhd.meromorphicNFOn
Complex.analyticOnNhd_univ_iff_differentiable
Complex.instCompleteSpace
Complex.differentiable_one_div_Gamma

MeromorphicOn

Theorems

NameKindAssumesProvesValidatesDepends On
Gamma πŸ“–mathematicalβ€”MeromorphicOn
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.Gamma
β€”Meromorphic.meromorphicOn
Meromorphic.Gamma

ProbabilityTheory

Definitions

NameCategoryTheorems
gammaCDFReal πŸ“–CompOpβ€”
gammaMeasure πŸ“–CompOp
6 mathmath: gammaCDFReal_eq_lintegral, gammaCDFReal_eq_integral, isProbabilityMeasure_gammaMeasure, cdf_gammaMeasure_eq_lintegral, isProbabilityMeasureGamma, cdf_gammaMeasure_eq_integral
gammaPDF πŸ“–CompOp
7 mathmath: gammaPDF_of_nonneg, gammaCDFReal_eq_lintegral, lintegral_gammaPDF_of_nonpos, cdf_gammaMeasure_eq_lintegral, gammaPDF_of_neg, gammaPDF_eq, lintegral_gammaPDF_eq_one
gammaPDFReal πŸ“–CompOp
6 mathmath: gammaPDFReal_nonneg, gammaCDFReal_eq_integral, measurable_gammaPDFReal, gammaPDFReal_pos, stronglyMeasurable_gammaPDFReal, cdf_gammaMeasure_eq_integral

Theorems

NameKindAssumesProvesValidatesDepends On
cdf_gammaMeasure_eq_integral πŸ“–mathematicalReal
Real.instLT
Real.instZero
StieltjesFunction.toFun
Real.linearOrder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
cdf
gammaMeasure
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iic
Real.instPreorder
gammaPDFReal
β€”isProbabilityMeasure_gammaMeasure
cdf_eq_real
gammaMeasure.eq_1
MeasureTheory.measureReal_def
MeasureTheory.withDensity_apply
measurableSet_Iic
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
MeasureTheory.integral_eq_lintegral_of_nonneg_ae
MeasureTheory.ae_of_all
MeasureTheory.Measure.instOuterMeasureClass
gammaPDFReal_nonneg
MeasureTheory.StronglyMeasurable.aestronglyMeasurable
stronglyMeasurable_gammaPDFReal
cdf_gammaMeasure_eq_lintegral πŸ“–mathematicalReal
Real.instLT
Real.instZero
StieltjesFunction.toFun
Real.linearOrder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
cdf
gammaMeasure
ENNReal.toReal
MeasureTheory.lintegral
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iic
Real.instPreorder
gammaPDF
β€”isProbabilityMeasure_gammaMeasure
cdf_eq_real
MeasureTheory.withDensity_apply
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
gammaCDFReal_eq_integral πŸ“–mathematicalReal
Real.instLT
Real.instZero
StieltjesFunction.toFun
Real.linearOrder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
cdf
gammaMeasure
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iic
Real.instPreorder
gammaPDFReal
β€”cdf_gammaMeasure_eq_integral
gammaCDFReal_eq_lintegral πŸ“–mathematicalReal
Real.instLT
Real.instZero
StieltjesFunction.toFun
Real.linearOrder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
cdf
gammaMeasure
ENNReal.toReal
MeasureTheory.lintegral
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iic
Real.instPreorder
gammaPDF
β€”cdf_gammaMeasure_eq_lintegral
gammaPDFReal_nonneg πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
gammaPDFReal
β€”mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.rpow_pos_of_pos
Real.Gamma_pos_of_pos
Real.rpow_nonneg
Real.exp_pos
Mathlib.Meta.Positivity.nonneg_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
gammaPDFReal_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
gammaPDFRealβ€”LT.lt.le
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Real.rpow_pos_of_pos
Real.Gamma_pos_of_pos
Real.exp_pos
gammaPDF_eq πŸ“–mathematicalβ€”gammaPDF
ENNReal.ofReal
Real
Real.instLE
Real.instZero
Real.decidableLE
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instPow
Real.Gamma
Real.instSub
Real.instOne
Real.exp
Real.instNeg
β€”β€”
gammaPDF_of_neg πŸ“–mathematicalReal
Real.instLT
Real.instZero
gammaPDF
ENNReal
instZeroENNReal
β€”not_le
ENNReal.ofReal_zero
gammaPDF_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
gammaPDF
ENNReal.ofReal
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instPow
Real.Gamma
Real.instSub
Real.instOne
Real.exp
Real.instNeg
β€”β€”
isProbabilityMeasureGamma πŸ“–mathematicalReal
Real.instLT
Real.instZero
MeasureTheory.IsProbabilityMeasure
Real.measurableSpace
gammaMeasure
β€”isProbabilityMeasure_gammaMeasure
isProbabilityMeasure_gammaMeasure πŸ“–mathematicalReal
Real.instLT
Real.instZero
MeasureTheory.IsProbabilityMeasure
Real.measurableSpace
gammaMeasure
β€”MeasureTheory.withDensity_apply
MeasureTheory.Measure.restrict_univ
lintegral_gammaPDF_eq_one
lintegral_gammaPDF_eq_one πŸ“–mathematicalReal
Real.instLT
Real.instZero
MeasureTheory.lintegral
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.MeasureSpace.volume
gammaPDF
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”MeasureTheory.setLIntegral_congr_fun
measurableSet_Iio
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
gammaPDF_of_neg
MeasureTheory.lintegral_zero
measurableSet_Ici
gammaPDF_of_nonneg
ENNReal.toReal_eq_one_iff
MeasureTheory.lintegral_add_compl
Set.compl_Ici
add_zero
MeasureTheory.integral_eq_lintegral_of_nonneg_ae
MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyLE.eq_1
MeasureTheory.ae_restrict_iff'
MeasureTheory.ae_of_all
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.rpow_pos_of_pos
Real.Gamma_pos_of_pos
Real.rpow_nonneg
Real.exp_pos
MeasureTheory.AEStronglyMeasurable.congr
Measurable.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
measurable_gammaPDFReal
eq_true_intro
MeasureTheory.integral_Ici_eq_integral_Ioi
Real.noAtoms_volume
mul_assoc
MeasureTheory.integral_const_mul
Real.integral_rpow_mul_exp_neg_mul_Ioi
div_mul_eq_mul_div
mul_div_assoc
div_self
LT.lt.ne'
mul_one
Real.div_rpow
zero_le_one
Real.instZeroLEOneClass
LT.lt.le
Real.one_rpow
mul_one_div
lintegral_gammaPDF_of_nonpos πŸ“–mathematicalReal
Real.instLE
Real.instZero
MeasureTheory.lintegral
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iio
Real.instPreorder
gammaPDF
ENNReal
instZeroENNReal
β€”MeasureTheory.setLIntegral_congr_fun
measurableSet_Iio
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
le_refl
MeasureTheory.lintegral_zero
ENNReal.ofReal_zero
measurable_gammaPDFReal πŸ“–mathematicalβ€”Measurable
Real
Real.measurableSpace
gammaPDFReal
β€”Measurable.ite
measurableSet_Ici
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Measurable.mul
ContinuousMul.measurableMulβ‚‚
instSecondCountableTopologyReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Measurable.const_mul
ContinuousMul.measurableMul
Measurable.pow_const
Real.hasMeasurablePow
measurable_id'
Measurable.exp
Measurable.neg
ContinuousNeg.measurableNeg
IsTopologicalRing.toContinuousNeg
measurable_const
stronglyMeasurable_gammaPDFReal πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.measurableSpace
gammaPDFReal
β€”Measurable.stronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
measurable_gammaPDFReal

Real

Definitions

NameCategoryTheorems
Gamma πŸ“–CompOp
60 mathmath: ProbabilityTheory.gammaPDF_of_nonneg, Gamma_pos_of_pos, Gamma_nat_add_half, Gamma_nonneg_of_nonneg, Gamma_strictAntiOn_Ioc, integral_exp_neg_mul_rpow, Complex.integral_rpow_mul_exp_neg_rpow, Complex.volume_sum_rpow_le, integral_rpow_mul_exp_neg_rpow, MeasureTheory.measure_lt_one_eq_integral_div_gamma, Gamma_two, Gamma_mul_Gamma_add_half, doublingGamma_eq_Gamma, Gamma_mul_Gamma_one_sub, Gamma_one, GammaSeq_tendsto_Gamma, Gamma_one_half_eq, Complex.integral_exp_neg_rpow, exists_isMinOn_Gamma_Ioi, MeasureTheory.volume_sum_rpow_lt, deriv_Gamma_nat, Gamma_strictMonoOn_Ici, Gamma_mul_add_mul_le_rpow_Gamma_mul_rpow_Gamma, Gamma_eq_zero_iff, MeasureTheory.volume_sum_rpow_le, integral_rpow_mul_exp_neg_mul_rpow, differentiableAt_Gamma, differentiableOn_Gamma_Ioi, InnerProductSpace.volume_ball, convexOn_log_Gamma, Gamma_add_one, Complex.integral_exp_neg_mul_rpow, convexOn_Gamma, Gamma_nat_add_one_add_half, Complex.volume_sum_rpow_lt, integral_exp_neg_rpow, Gamma_ofNat_eq_factorial, eulerMascheroniConstant_eq_neg_deriv, Gamma_eq_integral, Gamma_zero, hasDerivAt_Gamma_one_half, Gamma_mul_Gamma_add_half_of_pos, EuclideanSpace.volume_ball, hasDerivAt_Gamma_one, ProbabilityTheory.gammaPDF_eq, Complex.integral_rpow_mul_exp_neg_mul_rpow, integral_rpow_mul_exp_neg_mul_Ioi, InnerProductSpace.volume_closedBall, Complex.volume_sum_rpow_lt_one, Gamma_nat_eq_factorial, hasDerivAt_Gamma_nat, MeasureTheory.measure_unitBall_eq_integral_div_gamma, Gamma_neg_nat_eq_zero, Gamma_three_div_two_lt_one, Complex.Gamma_ofReal, EuclideanSpace.volume_closedBall, MeasureTheory.volume_sum_rpow_lt_one, eq_Gamma_of_log_convex, log_doublingGamma_eq, BohrMollerup.tendsto_log_gamma

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
lintegral_Iic_eq_lintegral_Iio_add_Icc πŸ“–mathematicalReal
Real.instLE
MeasureTheory.lintegral
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iic
Real.instPreorder
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Set.Iio
Set.Icc
β€”Set.Iio_union_Icc_eq_Iic
MeasureTheory.lintegral_union
measurableSet_Icc
BorelSpace.opensMeasurable
Real.borelSpace
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
neg_eq_zero
sub_eq_zero_of_eq

---

← Back to Index