Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Probability/Distributions/Gaussian/Basic.lean

Statistics

MetricCount
DefinitionsIsGaussian
1
TheoremscharFunDual_eq, charFun_eq, eq_gaussianReal, integrable_dual, map_eq_gaussianReal, memLp_dual, toIsProbabilityMeasure, instIsGaussianDirac, instIsGaussianMapHAdd, instIsGaussianMapHAdd_1, instIsGaussianMapHSub, instIsGaussianMapHSub_1, instIsGaussianMapNeg, instIsGaussianProdProdOfSecondCountableTopologyEither, isGaussian_conv, isGaussian_gaussianReal, isGaussian_iff_charFunDual_eq, isGaussian_iff_charFun_eq, isGaussian_map, isGaussian_map_equiv, isGaussian_map_equiv_iff, isGaussian_map_of_measurable, isGaussian_of_charFunDual_eq, isGaussian_of_isGaussian_map, isGaussian_of_map_eq_gaussianReal
25
Total26

ProbabilityTheory

Definitions

NameCategoryTheorems
IsGaussian πŸ“–CompData
20 mathmath: isGaussian_iff_gaussian_charFun, isGaussian_map_equiv_iff, instIsGaussianMapHSub, isGaussian_iff_charFun_eq, instIsGaussianDirac, isGaussian_gaussianReal, isGaussian_map, isGaussian_map_of_measurable, isGaussian_iff_gaussian_charFunDual, isGaussian_of_map_eq_gaussianReal, instIsGaussianMapHAdd_1, isGaussian_conv, HasGaussianLaw.isGaussian_map, isGaussian_iff_charFunDual_eq, isGaussian_of_charFunDual_eq, isGaussian_map_equiv, instIsGaussianMapHAdd, instIsGaussianProdProdOfSecondCountableTopologyEither, instIsGaussianMapHSub_1, instIsGaussianMapNeg

Theorems

NameKindAssumesProvesValidatesDepends On
instIsGaussianDirac πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
MeasureTheory.Measure.dirac
β€”MeasureTheory.Measure.map_dirac
ContinuousLinearMap.measurable
BorelSpace.opensMeasurable
Real.borelSpace
MeasureTheory.integral_dirac
Real.instCompleteSpace
OpensMeasurableSpace.toMeasurableSingletonClass
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
variance_dirac
Real.toNNReal_zero
gaussianReal_zero_var
instIsGaussianMapHAdd πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
MeasureTheory.Measure.map
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”isGaussian_of_charFunDual_eq
MeasureTheory.Measure.isFiniteMeasure_map
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
IsGaussian.toIsProbabilityMeasure
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.charFunDual_map_add_const
IsGaussian.charFunDual_eq
Complex.exp_add
map_add
SemilinearMapClass.toAddHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
variance_map
Measurable.aemeasurable
ContinuousLinearMap.measurable
BorelSpace.opensMeasurable
Real.borelSpace
AEMeasurable.add_const
ContinuousAdd.measurableAdd
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
aemeasurable_id
MeasureTheory.integral_map
Continuous.comp_aestronglyMeasurable
Complex.continuous_ofReal
Continuous.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
secondCountableTopologyEither_of_right
instSecondCountableTopologyReal
Continuous.clm_apply
continuous_const
continuous_id'
variance_add_const
integral_complex_ofReal
MeasureTheory.integral_add
IsGaussian.integrable_dual
MeasureTheory.integrable_const
MeasureTheory.integral_const
Real.instCompleteSpace
MeasureTheory.probReal_univ
one_mul
Complex.ofReal_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
instIsGaussianMapHAdd_1 πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
MeasureTheory.Measure.map
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”add_comm
instIsGaussianMapHAdd
instIsGaussianMapHSub πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
MeasureTheory.Measure.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”sub_eq_add_neg
instIsGaussianMapHAdd
instIsGaussianMapHSub_1 πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
MeasureTheory.Measure.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”sub_eq_add_neg
instIsGaussianMapHAdd_1
instIsGaussianMapNeg
MeasureTheory.Measure.map_map
Measurable.const_add
ContinuousAdd.measurableAdd
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
measurable_id'
Measurable.neg
ContinuousNeg.measurableNeg
IsTopologicalAddGroup.toContinuousNeg
instIsGaussianMapNeg πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
MeasureTheory.Measure.map
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousNeg
SeminormedAddCommGroup.toIsTopologicalAddGroup
isGaussian_map_equiv
instIsGaussianProdProdOfSecondCountableTopologyEither πŸ“–mathematicalβ€”IsGaussian
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Prod.instAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Prod.instModule
Real
Real.semiring
NormedSpace.toModule
Real.normedField
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”isGaussian_of_charFunDual_eq
Prod.borelSpace
MeasureTheory.Measure.prod.instIsFiniteMeasure
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
IsGaussian.toIsProbabilityMeasure
Nat.instAtLeastTwoHAddOfNat
RingHomCompTriple.ids
MeasureTheory.charFunDual_prod
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
IsGaussian.charFunDual_eq
Complex.exp_add
sub_add_sub_comm
add_mul
Distrib.rightDistribClass
integral_complex_ofReal
MeasureTheory.integral_continuousLinearMap_prod'
Real.instCompleteSpace
IsGaussian.integrable_dual
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
Complex.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
variance_dual_prod'
IsGaussian.memLp_dual
isGaussian_conv πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
MeasureTheory.Measure.conv
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
β€”MeasureTheory.Measure.map_conv_continuousLinearMap
ContinuousAdd.measurableMulβ‚‚
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Real.borelSpace
instSecondCountableTopologyReal
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
BorelSpace.opensMeasurable
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.sigmaFinite_of_locallyFinite
MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
IsGaussian.toIsProbabilityMeasure
MeasureTheory.integral_map
Measurable.aemeasurable
ContinuousLinearMap.measurable
aestronglyMeasurable_id
PseudoEMetricSpace.pseudoMetrizableSpace
variance_id_map
IsGaussian.map_eq_gaussianReal
gaussianReal_conv_gaussianReal
integral_id_gaussianReal
variance_id_gaussianReal
sup_of_le_left
Real.toNNReal_add
isGaussian_gaussianReal πŸ“–mathematicalβ€”IsGaussian
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instAddCommMonoid
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
Real.measurableSpace
gaussianReal
β€”gaussianReal_map_continuousLinearMap
integral_continuousLinearMap_gaussianReal
variance_continuousLinearMap_gaussianReal
Real.toNNReal_mul
le_max_of_le_left
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
Real.toNNReal_coe
isGaussian_iff_charFunDual_eq πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
MeasureTheory.charFunDual
Complex.exp
Complex
Complex.instSub
Complex.instMul
MeasureTheory.integral
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
instInnerProductSpaceRealComplex
Complex.ofReal
DFunLike.coe
StrongDual
Real.semiring
Real.pseudoMetricSpace
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Complex.I
DivInvMonoid.toDiv
Complex.instDivInvMonoid
variance
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
IsGaussian.charFunDual_eq
MeasureTheory.Measure.ext_of_charFun
Real.borelSpace
instSecondCountableTopologyReal
Real.instCompleteSpace
MeasureTheory.Measure.isFiniteMeasure_map
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
instIsProbabilityMeasureGaussianReal
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
MeasureTheory.charFun_map_eq_charFunDual_smul
BorelSpace.opensMeasurable
charFun_gaussianReal
Complex.ofReal_mul
MeasureTheory.integral_const_mul
integral_complex_ofReal
max_eq_left
variance_nonneg
mul_comm
Complex.ofReal_pow
variance_const_mul
isGaussian_iff_charFun_eq πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
MeasureTheory.charFun
InnerProductSpace.toInner
Complex.exp
Complex
Complex.instSub
Complex.instMul
MeasureTheory.integral
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.ofReal
Complex.I
DivInvMonoid.toDiv
Complex.instDivInvMonoid
variance
Inner.inner
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.instStarRingEnd
RingHomIsometric.ids
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SeminormedAddCommGroup.toIsTopologicalAddGroup
Function.Surjective.forall
LinearIsometryEquiv.surjective
MeasureTheory.charFun_eq_charFunDual_toDualMap
innerSL_apply_norm
LinearIsometryEquiv.coe_ofSurjective
isGaussian_map πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
MeasureTheory.Measure.map
DFunLike.coe
ContinuousLinearMap
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.funLike
β€”isGaussian_map_of_measurable
BorelSpace.opensMeasurable
ContinuousLinearMap.measurable
isGaussian_map_equiv πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
MeasureTheory.Measure.map
DFunLike.coe
ContinuousLinearEquiv
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
β€”RingHomInvPair.ids
isGaussian_map
isGaussian_map_equiv_iff πŸ“–mathematicalβ€”IsGaussian
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
MeasureTheory.Measure.map
DFunLike.coe
ContinuousLinearEquiv
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
β€”RingHomInvPair.ids
MeasureTheory.Measure.map_map
Continuous.measurable
BorelSpace.opensMeasurable
ContinuousMapClass.map_continuous
ContinuousSemilinearMapClass.toContinuousMapClass
ContinuousSemilinearEquivClass.continuousSemilinearMapClass
ContinuousLinearEquiv.continuousSemilinearEquivClass
ContinuousLinearEquiv.symm_comp_self
MeasureTheory.Measure.map_id
isGaussian_map_equiv
isGaussian_map_of_measurable πŸ“–mathematicalMeasurable
DFunLike.coe
ContinuousLinearMap
Real
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.funLike
IsGaussian
MeasureTheory.Measure.map
β€”isGaussian_of_map_eq_gaussianReal
RingHomCompTriple.ids
MeasureTheory.Measure.map_map
Continuous.measurable
Real.borelSpace
ContinuousLinearMap.continuous
ContinuousLinearMap.coe_comp'
IsGaussian.map_eq_gaussianReal
isGaussian_of_charFunDual_eq πŸ“–mathematicalMeasureTheory.charFunDual
Complex.exp
Complex
Complex.instSub
Complex.instMul
MeasureTheory.integral
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.ofReal
DFunLike.coe
StrongDual
Real.semiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Complex.I
DivInvMonoid.toDiv
Complex.instDivInvMonoid
variance
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
IsGaussianβ€”Nat.instAtLeastTwoHAddOfNat
isGaussian_iff_charFunDual_eq
isGaussian_of_isGaussian_map πŸ“–β€”IsGaussian
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instAddCommMonoid
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
Real.measurableSpace
MeasureTheory.Measure.map
DFunLike.coe
ContinuousLinearMap
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.funLike
β€”β€”IsGaussian.eq_gaussianReal
MeasureTheory.integral_map
Continuous.aemeasurable
Real.borelSpace
ContinuousLinearMap.continuous
aestronglyMeasurable_id
PseudoEMetricSpace.pseudoMetrizableSpace
BorelSpace.opensMeasurable
instSecondCountableTopologyReal
variance_map
aemeasurable_id
CompTriple.comp_eq
CompTriple.instId_comp
CompTriple.instIsIdId
isGaussian_of_map_eq_gaussianReal πŸ“–mathematicalMeasureTheory.Measure.map
Real
Real.measurableSpace
DFunLike.coe
ContinuousLinearMap
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instAddCommMonoid
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
ContinuousLinearMap.funLike
gaussianReal
IsGaussianβ€”isGaussian_of_isGaussian_map
isGaussian_gaussianReal

ProbabilityTheory.IsGaussian

Theorems

NameKindAssumesProvesValidatesDepends On
charFunDual_eq πŸ“–mathematicalβ€”MeasureTheory.charFunDual
Complex.exp
Complex
Complex.instSub
Complex.instMul
MeasureTheory.integral
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.ofReal
DFunLike.coe
StrongDual
Real.semiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Complex.I
DivInvMonoid.toDiv
Complex.instDivInvMonoid
ProbabilityTheory.variance
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
MeasureTheory.charFunDual_eq_charFun_map_one
BorelSpace.opensMeasurable
map_eq_gaussianReal
ProbabilityTheory.charFun_gaussianReal
one_mul
one_pow
mul_one
integral_complex_ofReal
ProbabilityTheory.variance_nonneg
charFun_eq πŸ“–mathematicalβ€”MeasureTheory.charFun
InnerProductSpace.toInner
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.exp
Complex
Complex.instSub
Complex.instMul
MeasureTheory.integral
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instInnerProductSpaceRealComplex
Complex.ofReal
Complex.I
DivInvMonoid.toDiv
Complex.instDivInvMonoid
ProbabilityTheory.variance
Inner.inner
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
RingHomIsometric.ids
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SeminormedAddCommGroup.toIsTopologicalAddGroup
MeasureTheory.charFun_eq_charFunDual_toDualMap
charFunDual_eq
eq_gaussianReal πŸ“–mathematicalβ€”ProbabilityTheory.gaussianReal
MeasureTheory.integral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.measurableSpace
Real.toNNReal
ProbabilityTheory.variance
β€”MeasureTheory.Measure.map_id
map_eq_gaussianReal
integrable_dual πŸ“–mathematicalβ€”MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
DFunLike.coe
StrongDual
Real.semiring
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”MeasureTheory.memLp_one_iff_integrable
memLp_dual
map_eq_gaussianReal πŸ“–mathematicalβ€”MeasureTheory.Measure.map
Real
Real.measurableSpace
DFunLike.coe
StrongDual
Real.semiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
ProbabilityTheory.gaussianReal
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.toNNReal
ProbabilityTheory.variance
β€”β€”
memLp_dual πŸ“–mathematicalβ€”MeasureTheory.MemLp
Real
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
SeminormedAddGroup.toContinuousENorm
Real.pseudoMetricSpace
DFunLike.coe
StrongDual
Real.semiring
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”MeasureTheory.memLp_map_measure_iff
aestronglyMeasurable_id
PseudoEMetricSpace.pseudoMetrizableSpace
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
Measurable.aemeasurable
ContinuousLinearMap.measurable
map_eq_gaussianReal
ENNReal.coe_toNNReal
ProbabilityTheory.memLp_id_gaussianReal
toIsProbabilityMeasure πŸ“–mathematicalβ€”MeasureTheory.IsProbabilityMeasureβ€”map_eq_gaussianReal
MeasureTheory.integral_zero
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.instIsProbabilityMeasureGaussianReal
MeasureTheory.Measure.map_apply
measurable_zero
MeasurableSet.univ

---

← Back to Index