Documentation Verification Report

Independence

πŸ“ Source: Mathlib/Probability/Distributions/Gaussian/HasGaussianLaw/Independence.lean

Statistics

MetricCount
Definitions0
TheoremsiIndepFun_of_covariance_eq_zero, iIndepFun_of_covariance_eval, iIndepFun_of_covariance_inner, iIndepFun_of_covariance_strongDual, indepFun_of_covariance_eq_zero, indepFun_of_covariance_eval, indepFun_of_covariance_inner, indepFun_of_covariance_strongDual, hasGaussianLaw, hasGaussianLaw_sub_of_sub, hasGaussianLaw, hasGaussianLaw_add, hasGaussianLaw_fun_add, hasGaussianLaw_fun_sub, hasGaussianLaw_fun_sum, hasGaussianLaw_sub, hasGaussianLaw_sum
17
Total17

ProbabilityTheory.HasGaussianLaw

Theorems

NameKindAssumesProvesValidatesDepends On
iIndepFun_of_covariance_eq_zero πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Pi.addCommMonoid
Real.instAddCommMonoid
Pi.Function.module
Real.semiring
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
MeasurableSpace.pi
Real.measurableSpace
ProbabilityTheory.covariance
Real.instZero
ProbabilityTheory.iIndepFunβ€”iIndepFun_of_covariance_strongDual
Real.instCompleteSpace
Real.borelSpace
instSecondCountableTopologyReal
RingHomInvPair.instStarRingEnd
RingHomIsometric.ids
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SeminormedAddCommGroup.toIsTopologicalAddGroup
conj_trivial
instTrivialStarReal
ProbabilityTheory.covariance_mul_const_right
ProbabilityTheory.covariance_mul_const_left
MulZeroClass.zero_mul
iIndepFun_of_covariance_eval πŸ“–mathematicalFinite
ProbabilityTheory.HasGaussianLaw
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Pi.addCommMonoid
Real.instAddCommMonoid
Pi.module
Real.semiring
Pi.Function.module
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
MeasurableSpace.pi
Real.measurableSpace
ProbabilityTheory.covariance
Real.instZero
ProbabilityTheory.iIndepFunβ€”isProbabilityMeasure
Nat.instAtLeastTwoHAddOfNat
ProbabilityTheory.iIndepFun.comp
iIndepFun_of_covariance_inner
fact_one_le_two_ennreal
PiLp.completeSpace
Real.instCompleteSpace
PiLp.borelSpace
Finite.to_countable
Real.borelSpace
instSecondCountableTopologyReal
PiLp.secondCountableTopology
map_equiv
Pi.borelSpace
TopologicalSpace.instSecondCountableTopologyForallOfCountable
RingHomInvPair.ids
OrthonormalBasis.sum_repr
Finset.sum_congr
sum_inner
inner_smul_left
ProbabilityTheory.covariance_fun_sum_fun_sum
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
conj_trivial
instTrivialStarReal
EuclideanSpace.basisFun_inner
MeasureTheory.MemLp.const_mul
memLp_two
eval
Finset.sum_eq_zero
ProbabilityTheory.covariance_const_mul_left
ProbabilityTheory.covariance_const_mul_right
MulZeroClass.mul_zero
WithLp.measurable_ofLp
iIndepFun_of_covariance_inner πŸ“–mathematicalCompleteSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
BorelSpace
UniformSpace.toTopologicalSpace
SecondCountableTopology
ProbabilityTheory.HasGaussianLaw
Pi.topologicalSpace
Pi.addCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Pi.module
Real
Real.semiring
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
MeasurableSpace.pi
ProbabilityTheory.covariance
Inner.inner
InnerProductSpace.toInner
Real.instZero
ProbabilityTheory.iIndepFunβ€”iIndepFun_of_covariance_strongDual
RingHomInvPair.instStarRingEnd
RingHomIsometric.ids
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SeminormedAddCommGroup.toIsTopologicalAddGroup
InnerProductSpace.toDual_symm_apply
iIndepFun_of_covariance_strongDual πŸ“–mathematicalCompleteSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
BorelSpace
UniformSpace.toTopologicalSpace
SecondCountableTopology
ProbabilityTheory.HasGaussianLaw
Pi.topologicalSpace
Pi.addCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Pi.module
Real
Real.semiring
NormedSpace.toModule
Real.normedField
MeasurableSpace.pi
ProbabilityTheory.covariance
DFunLike.coe
StrongDual
Real.pseudoMetricSpace
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Real.instZero
ProbabilityTheory.iIndepFunβ€”isProbabilityMeasure
RingHomCompTriple.ids
ProbabilityTheory.iIndepFun_iff_charFunDual_pi
AEMeasurable.eval
aemeasurable
Finset.sum_congr
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
LinearMap.sum_single_apply
Nat.instAtLeastTwoHAddOfNat
charFunDual_map_eq_fun
Pi.borelSpace
Finite.to_countable
Finset.prod_congr
eval
Finset.sum_sub_distrib
MeasureTheory.integral_finset_sum
MeasureTheory.Integrable.ofReal
integrable
Real.borelSpace
Real.instCompleteSpace
instSecondCountableTopologyReal
map_fun
ProbabilityTheory.variance_fun_sum
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
memLp_two
Complex.instCharZero
Finset.sum_eq_single_of_mem
ProbabilityTheory.covariance_self
indepFun_of_covariance_eq_zero πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
Real
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Prod.instAddCommMonoid
Real.instAddCommMonoid
Prod.instModule
Real.semiring
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
Prod.instMeasurableSpace
Real.measurableSpace
ProbabilityTheory.covariance
Real.instZero
ProbabilityTheory.IndepFunβ€”indepFun_of_covariance_strongDual
Real.instCompleteSpace
Real.borelSpace
instSecondCountableTopologyReal
RingHomInvPair.instStarRingEnd
RingHomIsometric.ids
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SeminormedAddCommGroup.toIsTopologicalAddGroup
conj_trivial
instTrivialStarReal
ProbabilityTheory.covariance_mul_const_right
ProbabilityTheory.covariance_mul_const_left
MulZeroClass.zero_mul
indepFun_of_covariance_eval πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
instTopologicalSpaceProd
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Prod.instAddCommMonoid
Pi.addCommMonoid
Real.instAddCommMonoid
Prod.instModule
Real.semiring
Pi.Function.module
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
Prod.instMeasurableSpace
MeasurableSpace.pi
Real.measurableSpace
ProbabilityTheory.covariance
Real.instZero
ProbabilityTheory.IndepFunβ€”isProbabilityMeasure
Nat.instAtLeastTwoHAddOfNat
ProbabilityTheory.IndepFun.comp
indepFun_of_covariance_inner
fact_one_le_two_ennreal
PiLp.completeSpace
Real.instCompleteSpace
PiLp.borelSpace
Finite.to_countable
Real.borelSpace
instSecondCountableTopologyReal
PiLp.secondCountableTopology
map_equiv
Prod.borelSpace
Pi.borelSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
RingHomInvPair.ids
OrthonormalBasis.sum_repr
Finset.sum_congr
sum_inner
inner_smul_left
ProbabilityTheory.covariance_fun_sum_fun_sum
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
conj_trivial
instTrivialStarReal
EuclideanSpace.basisFun_inner
MeasureTheory.MemLp.const_mul
memLp_two
eval
fst
snd
Finset.sum_eq_zero
ProbabilityTheory.covariance_const_mul_left
ProbabilityTheory.covariance_const_mul_right
MulZeroClass.mul_zero
WithLp.measurable_ofLp
indepFun_of_covariance_inner πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Prod.instAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Prod.instModule
Real
Real.semiring
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Prod.instMeasurableSpace
ProbabilityTheory.covariance
Inner.inner
InnerProductSpace.toInner
Real.instZero
ProbabilityTheory.IndepFunβ€”indepFun_of_covariance_strongDual
RingHomInvPair.instStarRingEnd
RingHomIsometric.ids
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SeminormedAddCommGroup.toIsTopologicalAddGroup
InnerProductSpace.toDual_symm_apply
indepFun_of_covariance_strongDual πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Prod.instAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Prod.instModule
Real
Real.semiring
NormedSpace.toModule
Real.normedField
Prod.instMeasurableSpace
ProbabilityTheory.covariance
DFunLike.coe
StrongDual
Real.pseudoMetricSpace
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Real.instZero
ProbabilityTheory.IndepFunβ€”isProbabilityMeasure
RingHomCompTriple.ids
ProbabilityTheory.indepFun_iff_charFunDual_prod
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
aemeasurable
fst
snd
Nat.instAtLeastTwoHAddOfNat
charFunDual_map_eq
Prod.borelSpace
secondCountableTopologyEither_of_right
Complex.exp_add
sub_add_sub_comm
add_mul
Distrib.rightDistribClass
Complex.ofReal_add
MeasureTheory.integral_add
integrable
Real.borelSpace
Real.instCompleteSpace
instSecondCountableTopologyReal
map
add_div
ProbabilityTheory.variance_add
memLp_two
MulZeroClass.mul_zero
add_zero

ProbabilityTheory.IndepFun

Theorems

NameKindAssumesProvesValidatesDepends On
hasGaussianLaw πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.IndepFun
instTopologicalSpaceProd
Prod.instAddCommMonoid
Prod.instModule
Real.semiring
Prod.instMeasurableSpace
β€”ProbabilityTheory.HasGaussianLaw.isProbabilityMeasure
instIsTopologicalAddGroupReal
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
Nat.instAtLeastTwoHAddOfNat
ProbabilityTheory.isGaussian_iff_gaussian_charFunDual
TopologicalSpace.instSecondCountableTopologyProd
CompleteSpace.prod
Prod.borelSpace
secondCountableTopologyEither_of_right
MeasureTheory.Measure.isFiniteMeasure_map
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
ProbabilityTheory.isPosSemidef_covarianceBilinDual
RingHomCompTriple.ids
ProbabilityTheory.indepFun_iff_charFunDual_prod
ProbabilityTheory.HasGaussianLaw.aemeasurable
add_zero
zero_add
map_add
SemilinearMapClass.toAddHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
Complex.ofReal_add
add_mul
Distrib.rightDistribClass
add_div
add_sub_add_comm
Complex.exp_add
ProbabilityTheory.IsGaussian.charFunDual_eq
ProbabilityTheory.HasGaussianLaw.isGaussian_map
integral_complex_ofReal
ContinuousLinearMap.integral_comp_id_comm
Real.instCompleteSpace
ProbabilityTheory.IsGaussian.integrable_id
ProbabilityTheory.covarianceBilinDual_self_eq_variance
ProbabilityTheory.IsGaussian.memLp_two_id
hasGaussianLaw_sub_of_sub πŸ“–β€”ProbabilityTheory.HasGaussianLaw
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.IndepFun
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”β€”ProbabilityTheory.HasGaussianLaw.isProbabilityMeasure
Nat.instAtLeastTwoHAddOfNat
ProbabilityTheory.hasGaussianLaw_iff_charFunDual_map_eq
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
AEMeasurable.sub'
ContinuousSub.measurableSubβ‚‚
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
ProbabilityTheory.HasGaussianLaw.aemeasurable
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
ProbabilityTheory.HasGaussianLaw.charFunDual_map_eq
Pi.mul_apply
charFunDual_map_add_eq_mul
add_sub_cancel
Complex.exp_add
sub_add_sub_comm
add_mul
Distrib.rightDistribClass
Complex.ofReal_add
MeasureTheory.integral_add
ProbabilityTheory.HasGaussianLaw.integrable
Real.borelSpace
Real.instCompleteSpace
instSecondCountableTopologyReal
ProbabilityTheory.HasGaussianLaw.map
map_comp_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
MeasureTheory.Integrable.sub
add_div
variance_add
ProbabilityTheory.HasGaussianLaw.memLp_two
MeasureTheory.MemLp.sub
comp
ContinuousLinearMap.measurable
BorelSpace.opensMeasurable
map_sub

ProbabilityTheory.iIndepFun

Theorems

NameKindAssumesProvesValidatesDepends On
hasGaussianLaw πŸ“–mathematicalCompleteSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
BorelSpace
UniformSpace.toTopologicalSpace
SecondCountableTopology
ProbabilityTheory.HasGaussianLaw
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.iIndepFun
Pi.topologicalSpace
Pi.addCommMonoid
Pi.module
Real.semiring
MeasurableSpace.pi
β€”isProbabilityMeasure
instIsTopologicalAddGroupReal
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
Nat.instAtLeastTwoHAddOfNat
ProbabilityTheory.isGaussian_iff_gaussian_charFunDual
TopologicalSpace.instSecondCountableTopologyForallOfCountable
Finite.to_countable
Pi.complete
Pi.borelSpace
MeasureTheory.Measure.isFiniteMeasure_map
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
ProbabilityTheory.isPosSemidef_covarianceBilinDual
RingHomCompTriple.ids
ProbabilityTheory.iIndepFun_iff_charFunDual_pi
ProbabilityTheory.HasGaussianLaw.aemeasurable
LinearMap.sum_single_apply
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
Complex.ofReal_sum
Finset.sum_mul
Finset.sum_div
Complex.exp_sum
ProbabilityTheory.IsGaussian.charFunDual_eq
ProbabilityTheory.HasGaussianLaw.isGaussian_map
integral_complex_ofReal
ContinuousLinearMap.integral_comp_id_comm
Real.instCompleteSpace
ProbabilityTheory.IsGaussian.integrable_id
ProbabilityTheory.covarianceBilinDual_self_eq_variance
ProbabilityTheory.IsGaussian.memLp_two_id
hasGaussianLaw_add πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.IndepFun
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”ProbabilityTheory.HasGaussianLaw.add
ProbabilityTheory.IndepFun.hasGaussianLaw
hasGaussianLaw_fun_add πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.IndepFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”ProbabilityTheory.HasGaussianLaw.add
ProbabilityTheory.IndepFun.hasGaussianLaw
hasGaussianLaw_fun_sub πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.IndepFun
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”ProbabilityTheory.HasGaussianLaw.sub
ProbabilityTheory.IndepFun.hasGaussianLaw
hasGaussianLaw_fun_sum πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.iIndepFun
Finset.sum
Finset.univ
β€”ProbabilityTheory.HasGaussianLaw.fun_sum
hasGaussianLaw
Finite.of_fintype
hasGaussianLaw_sub πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.IndepFun
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”ProbabilityTheory.HasGaussianLaw.sub
ProbabilityTheory.IndepFun.hasGaussianLaw
hasGaussianLaw_sum πŸ“–mathematicalProbabilityTheory.HasGaussianLaw
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.iIndepFun
Finset.sum
Pi.addCommMonoid
Finset.univ
β€”ProbabilityTheory.HasGaussianLaw.sum
hasGaussianLaw
Finite.of_fintype

---

← Back to Index