Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Probability/Distributions/Gaussian/IsGaussianProcess/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsaemeasurable, comp_left, comp_right, hasGaussianLaw_add, hasGaussianLaw_eval, hasGaussianLaw_fun_add, hasGaussianLaw_fun_sub, hasGaussianLaw_fun_sum, hasGaussianLaw_increments, hasGaussianLaw_prodMk, hasGaussianLaw_sub, hasGaussianLaw_sum, isProbabilityMeasure, of_isGaussianProcess, restrict, shift, smul
17
Total17

ProbabilityTheory.IsGaussianProcess

Theorems

NameKindAssumesProvesValidatesDepends On
aemeasurable πŸ“–mathematicalProbabilityTheory.IsGaussianProcessAEMeasurableβ€”AEMeasurable.eval
AEMeasurable.of_map_ne_zero
MeasureTheory.IsProbabilityMeasure.ne_zero
ProbabilityTheory.IsGaussian.toIsProbabilityMeasure
ProbabilityTheory.HasGaussianLaw.isGaussian_map
hasGaussianLaw
comp_left πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
DFunLike.coe
ContinuousLinearMap
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.funLike
β€”of_isGaussianProcess
map_add
SemilinearMapClass.toAddHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Continuous.clm_apply
continuous_const
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuous_apply
comp_right πŸ“–β€”ProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
β€”β€”of_isGaussianProcess
continuous_apply
hasGaussianLaw_add πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.HasGaussianLaw
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”ProbabilityTheory.HasGaussianLaw.add
hasGaussianLaw_prodMk
hasGaussianLaw_eval πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.HasGaussianLawβ€”ProbabilityTheory.HasGaussianLaw.map
Pi.borelSpace_of_subsingleton
Unique.instSubsingleton
hasGaussianLaw
hasGaussianLaw_fun_add πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.HasGaussianLaw
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”hasGaussianLaw_add
hasGaussianLaw_fun_sub πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.HasGaussianLaw
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”hasGaussianLaw_sub
hasGaussianLaw_fun_sum πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.HasGaussianLaw
Finset.sum
β€”Finset.sum_apply
hasGaussianLaw_sum
hasGaussianLaw_increments πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.HasGaussianLaw
Pi.topologicalSpace
Pi.addCommMonoid
Pi.Function.module
Real.semiring
MeasurableSpace.pi
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.const_add_termg
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
AddCommGroup.intIsScalarTower
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
eq_intCast
Int.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Int.cast_neg
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
continuous_pi
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuous_apply
ProbabilityTheory.HasGaussianLaw.map
Pi.borelSpace
Finite.to_countable
Finite.of_fintype
instCountableFin
hasGaussianLaw
hasGaussianLaw_prodMk πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.HasGaussianLaw
instTopologicalSpaceProd
Prod.instAddCommMonoid
Prod.instModule
Real.semiring
Prod.instMeasurableSpace
β€”ProbabilityTheory.HasGaussianLaw.prodMk
Finite.of_fintype
hasGaussianLaw
hasGaussianLaw_sub πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.HasGaussianLaw
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”ProbabilityTheory.HasGaussianLaw.sub
hasGaussianLaw_prodMk
hasGaussianLaw_sum πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
ProbabilityTheory.HasGaussianLaw
Finset.sum
Pi.addCommMonoid
β€”Finset.sum_congr
Finset.sum_attach
ProbabilityTheory.HasGaussianLaw.sum
hasGaussianLaw
isProbabilityMeasure πŸ“–mathematicalProbabilityTheory.IsGaussianProcessMeasureTheory.IsProbabilityMeasureβ€”ProbabilityTheory.HasGaussianLaw.isProbabilityMeasure
hasGaussianLaw
of_isGaussianProcess πŸ“–β€”ProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
DFunLike.coe
ContinuousLinearMap
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.topologicalSpace
Finset
SetLike.instMembership
Finset.instSetLike
Pi.addCommMonoid
Pi.Function.module
ContinuousLinearMap.funLike
Finset.restrict
β€”β€”Finset.mem_biUnion
map_add
SemilinearMapClass.toAddHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
continuous_pi
Continuous.comp'
ContinuousLinearMap.continuous
continuous_apply
ProbabilityTheory.HasGaussianLaw.map
Pi.borelSpace
Finite.to_countable
Finite.of_fintype
hasGaussianLaw
restrict πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
Set.Elem
Set
Set.instMembership
β€”comp_right
shift πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”of_isGaussianProcess
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.const_add_termg
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
AddCommGroup.intIsScalarTower
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
eq_intCast
Int.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Int.cast_neg
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuous_apply
smul πŸ“–mathematicalProbabilityTheory.IsGaussianProcess
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real
Real.normedField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
β€”comp_left
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
IsScalarTower.left

---

← Back to Index