Documentation Verification Report

Pareto

πŸ“ Source: Mathlib/Probability/Distributions/Pareto.lean

Statistics

MetricCount
DefinitionsparetoMeasure, paretoPDF, paretoPDFReal
3
Theoremscdf_paretoMeasure_eq_integral, cdf_paretoMeasure_eq_lintegral, isProbabilityMeasure_paretoMeasure, lintegral_paretoPDF_eq_one, lintegral_paretoPDF_of_le, measurable_paretoPDFReal, paretoCDFReal_eq_integral, paretoCDFReal_eq_lintegral, paretoPDFReal_nonneg, paretoPDFReal_pos, paretoPDF_eq, paretoPDF_of_le, paretoPDF_of_lt, stronglyMeasurable_paretoPDFReal
14
Total17

ProbabilityTheory

Definitions

NameCategoryTheorems
paretoMeasure πŸ“–CompOp
5 mathmath: paretoCDFReal_eq_lintegral, isProbabilityMeasure_paretoMeasure, cdf_paretoMeasure_eq_integral, paretoCDFReal_eq_integral, cdf_paretoMeasure_eq_lintegral
paretoPDF πŸ“–CompOp
7 mathmath: paretoCDFReal_eq_lintegral, paretoPDF_of_le, lintegral_paretoPDF_of_le, lintegral_paretoPDF_eq_one, paretoPDF_eq, paretoPDF_of_lt, cdf_paretoMeasure_eq_lintegral
paretoPDFReal πŸ“–CompOp
6 mathmath: paretoPDFReal_pos, cdf_paretoMeasure_eq_integral, measurable_paretoPDFReal, paretoCDFReal_eq_integral, paretoPDFReal_nonneg, stronglyMeasurable_paretoPDFReal

Theorems

NameKindAssumesProvesValidatesDepends On
cdf_paretoMeasure_eq_integral πŸ“–mathematicalReal
Real.instLT
Real.instZero
StieltjesFunction.toFun
Real.linearOrder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
cdf
paretoMeasure
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iic
Real.instPreorder
paretoPDFReal
β€”isProbabilityMeasure_paretoMeasure
cdf_eq_real
paretoMeasure.eq_1
MeasureTheory.measureReal_def
MeasureTheory.withDensity_apply
measurableSet_Iic
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
MeasureTheory.integral_eq_lintegral_of_nonneg_ae
MeasureTheory.ae_of_all
MeasureTheory.Measure.instOuterMeasureClass
paretoPDFReal_nonneg
LT.lt.le
MeasureTheory.StronglyMeasurable.aestronglyMeasurable
stronglyMeasurable_paretoPDFReal
cdf_paretoMeasure_eq_lintegral πŸ“–mathematicalReal
Real.instLT
Real.instZero
StieltjesFunction.toFun
Real.linearOrder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
cdf
paretoMeasure
ENNReal.toReal
MeasureTheory.lintegral
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iic
Real.instPreorder
paretoPDF
β€”isProbabilityMeasure_paretoMeasure
cdf_eq_real
paretoMeasure.eq_1
MeasureTheory.measureReal_def
MeasureTheory.withDensity_apply
measurableSet_Iic
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
isProbabilityMeasure_paretoMeasure πŸ“–mathematicalReal
Real.instLT
Real.instZero
MeasureTheory.IsProbabilityMeasure
Real.measurableSpace
paretoMeasure
β€”MeasureTheory.withDensity_apply
MeasureTheory.Measure.restrict_univ
lintegral_paretoPDF_eq_one
lintegral_paretoPDF_eq_one πŸ“–mathematicalReal
Real.instLT
Real.instZero
MeasureTheory.lintegral
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.MeasureSpace.volume
paretoPDF
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”lintegral_paretoPDF_of_le
le_refl
MeasureTheory.setLIntegral_congr_fun
measurableSet_Ici
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
paretoPDF_of_le
ENNReal.toReal_eq_one_iff
MeasureTheory.lintegral_add_compl
Set.compl_Ici
add_zero
MeasureTheory.integral_eq_lintegral_of_nonneg_ae
MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyLE.eq_1
MeasureTheory.ae_restrict_iff'
Filter.univ_mem'
lt_of_lt_of_le
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.rpow_pos_of_pos
MeasureTheory.AEStronglyMeasurable.congr
Measurable.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
measurable_paretoPDFReal
MeasureTheory.ae_of_all
eq_true_intro
MeasureTheory.integral_Ici_eq_integral_Ioi
Real.noAtoms_volume
MeasureTheory.integral_const_mul
integral_Ioi_rpow_of_lt
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
neg_add_rev
neg_add_cancel_comm
neg_div_neg_eq
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
one_mul
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Real.rpow_add
add_neg_cancel
Real.rpow_zero
lintegral_paretoPDF_of_le πŸ“–mathematicalReal
Real.instLE
MeasureTheory.lintegral
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iio
Real.instPreorder
paretoPDF
ENNReal
instZeroENNReal
β€”MeasureTheory.setLIntegral_congr_fun
measurableSet_Iio
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
le_refl
MeasureTheory.lintegral_zero
ENNReal.ofReal_zero
measurable_paretoPDFReal πŸ“–mathematicalβ€”Measurable
Real
Real.measurableSpace
paretoPDFReal
β€”Measurable.ite
measurableSet_Ici
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Measurable.const_mul
ContinuousMul.measurableMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Measurable.pow_const
Real.hasMeasurablePow
measurable_id
measurable_const
paretoCDFReal_eq_integral πŸ“–mathematicalReal
Real.instLT
Real.instZero
StieltjesFunction.toFun
Real.linearOrder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
cdf
paretoMeasure
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iic
Real.instPreorder
paretoPDFReal
β€”cdf_paretoMeasure_eq_integral
paretoCDFReal_eq_lintegral πŸ“–mathematicalReal
Real.instLT
Real.instZero
StieltjesFunction.toFun
Real.linearOrder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
cdf
paretoMeasure
ENNReal.toReal
MeasureTheory.lintegral
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iic
Real.instPreorder
paretoPDF
β€”cdf_paretoMeasure_eq_lintegral
paretoPDFReal_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
paretoPDFRealβ€”le_iff_eq_or_lt
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Real.rpow_nonneg
lt_of_lt_of_le
le_of_lt
Real.rpow_pos_of_pos
Mathlib.Meta.Positivity.nonneg_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
paretoPDFReal_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
paretoPDFRealβ€”paretoPDFReal.eq_1
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.rpow_pos_of_pos
paretoPDF_eq πŸ“–mathematicalβ€”paretoPDF
ENNReal.ofReal
Real
Real.instLE
Real.decidableLE
Real.instMul
Real.instPow
Real.instNeg
Real.instAdd
Real.instOne
Real.instZero
β€”β€”
paretoPDF_of_le πŸ“–mathematicalReal
Real.instLE
paretoPDF
ENNReal.ofReal
Real.instMul
Real.instPow
Real.instNeg
Real.instAdd
Real.instOne
β€”β€”
paretoPDF_of_lt πŸ“–mathematicalReal
Real.instLT
paretoPDF
ENNReal
instZeroENNReal
β€”not_le
ENNReal.ofReal_zero
stronglyMeasurable_paretoPDFReal πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.measurableSpace
paretoPDFReal
β€”Measurable.stronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
measurable_paretoPDFReal

---

← Back to Index